OllyDbg 2.01 Brief Help

Table of contents

LI o] (0l oTo] 01 (=T 1 £ PP OTPRT 1
Tl oo [N L1 1o o HA PP PRR 3
Differences between VErsions 1.10 @GN0 2.XX....c.uuuuuieiiiriie it sstieee s siieee s stbeeessbbe e e e s snbeeessssbeeessnnbeeesannneas 3
1011713 oTo B2 0 o 1YL QY T TP PPPPRT 3
o) (=105 1= 1o T o E TP UPT PSP 5
[T o = L o - T TP 6
INSLAIALION ... 7
LT] L 7
Settings USEd iN ThiS fIlE...... ettt e e e e s et e e e e e e e e e sannbeeeeeas 8
S] (=] 0 1SS 9
Y= LT aTo T T I=] o] 1 ToT= 4o o SRR 9
[STSE Yo I = (o1 q o] S 11
Lesson 2 - PAtChiNg the COUEooiiiiiiiiic e e e e e e e e s e e e e e e e e e ananrneeees 14
LESSON 3 = RUN TFABCE ..ottt e ettt ettt e e sttt e e e e e s ettt e e e e e s e n bbb e et e e e e s e e nn b e e e e e e e e e s nrnrneeeeas 16
LIS S = PSSP 18
Assembler and disassembBIEr ... 21
LT a1 T = VT) 0] 1 = L4 21
DiSASSEMDBIING MOAES.ottt e e e e et e e e e e e e e s e bbbt e e e e e e e e e anbeeeeeaeeesanrnbneeaeas 21
Demangling of SYMDBDOIC NAMES ...t e e e e e e e eee s 22
(070 g To [T0Tg =TI o0] 3 110 7= 5 o 1= 23
ST T= T 0 0] o] [)Y = 0P 23
Undocumented 80X86 COMIMANUSuuiieiiiiie ittt itiee e sttt e ettt e et e e s st e e e e bt e e e s snbb e e e e snbee e e s anbaeeeenneeas 24
/=T o] o V2 o > o R 26
1=l oL o T o) o] 11 =1 1T o PR 26
L= =TI 1= 1 0o Y/ 26
2T T SR 27
Break ON MEIMOIY GCCESSuttiiiiiaiiiititt et e e e e ettt et e e e e e et bttt e e e e e s e abebeeeeeae e e s bbb beeeeaeeesanbbbbeeaaaeseaannteneeeas 27
DUMIPS <. 28
Y=L (] o [PPPPPRt 30
Search for DINAIY PATEINottt e e e e e e e bbb e e e e e e e e s nbbeeeeeaa e e e annnnees 30
Y= L= Lo I (0T g =Y (=] (=T 1= 31
Search for refereNCeA SINGSvuiiiiii i s e e e e e e e s s s e er e e e e e s e ansntarnreeeeeaannnnes 32
SEAICH fOr @ CONSTANT.......eiiiiiiiii ettt e s bt e e e e sttt e e e sn b bt e e e anbee e e e anbeee e e anbeeeeennes 33
Search for a command or a sequence Of COMMANGS...........ccuvviiiieeeiiiiir e e e e nnnes 33
SEAICH FOF All IEEIMS ...eiii ittt e e ettt e e e sttt e e e st b e e e e anbe e e e s anbeee e e snbeeeeennes 36
Search for all INtErMOTUIAT CAIISooiiiiiii et e et e e e sbaeeeeanes 36
LI L= LSO 38
LT a1 T = VT) 0] 1 = L4 38
Stepping in multithreaded aPPlICAIONSooii i a e e e e e e e e e eanees 38
EXCEPLION NANAIEIS ...ttt e oottt e e e e oo e e bbbt e e e e e e e e e anbaeeeaeeeeeaannnbeneaaaaeeaans 39
EXPreSSIONS N0 WALCNES.....coii ettt et e e e s e st e e e e e e e e s e aanbbeeeaeaeeeaannbeneeaaeeeaans 41
LT o 1T = VT) 0] 1 = L4 41
ST R (o= (=T 4 =T o) 41
(70 a1 0T 01 ¢34 010 Y/ PSP 42
S o al=Te r-TaTo UL o TS o] aT=To [1 - PSRRI 44
L@ 0= - 11 o] 0 1SS 44
T L] o] LSt o] =7 (o] o I 45

Y (T 0] 01T - Vo] PSR 45

Y = 1 £ SRR 46

L oTot=To 0] £ TSP PRR 46
S Lol Y = T T= 1o SRR TPR 47
100} o PSPPIt 48
SWILChES @Nd CASCATEU IFSueiiiiiiiii ettt e ettt e e ettt e e sbb e e e e abbeeeesnbaeeeenne 48
e g=To [Tt o] gl o)l (=T o IS] =] £ PRSP UEUT PP 51
KNOWN AP FUNCHIONS ...ttt e e oo ekttt e e e e e e e e e bbbt e e e e e e e e e anbbeeeeaeeesannbnbeeeaaas 52
Standard IBrary fUNCLIONSe et e e e e e et e e e e e e e e e eanneees 52
[D1=] o 10T o |1 o [P TP TT TP 55
O] oT=T ol aTo IR a2 o] fo o] =T o F PR UURUPUPPPPTN 55
OllyDbg as a just-in-time dEDUGQETueiiiiiie et r e e e e s et e e e e e e e e e annnes 55
Attaching to the rUNNING PrOCESSES ...uuiiieiiiiiiiiiiiee e e e e er e e e e s s et e e e s s et r e e aeessassstaaareeeeesansareeenaeeaean 56
[DI=T o 10 e o 1o Jo) o] o110 I o] oo =TSTST =TSP 57
2T 1= 124 010 1 £SO 57
LT = Yot I= VT I o101 1 Vo S 61
[101 = Vo TP PTPRP 64
D1 =Tox o 0TI 0 =1 o T T To [T SRR 65
[Tz To [0 || 1= = T TP UTTTR PR 65
[1= o T TP TT PP 67
[(5] o I o] g edo] 1 410 4 F= T [0 £ 3 TS U P UUTTT PR 67
[(] o R g I Y o I {1 [ox 1T RSP UTTTT PP 67
(I [S3 (o] 14172110] o PP TT TP 68
0]] TP PSP PETTPRPPPPP 68
(©70] (011 £= F PR PTTPRPRTPPRP 70
(@00 (=38 0T | o] o] 1 1o PSP 72
] 1] £ (o110 £ PR TTPRPPTPPRPN 73
LI =g o U=V [PSP 74
ReNaAMING the OllYADG.EXE ...eeiie e e e e e e e e e e e e s st e e e e e e e anntareneeeeeeean 76
Y oo 0o | T= PP TP TP PPRRPT 77

]
* © squashed bug 2.0

OllyDbg © 2000-2013 Oleh Yuschuk, All Rights Reserved
All brand names and product names used in OllyDbg, accompanying files or this help are trademarks, registered trademarks, or trade names of their
respective holders. You are free to make excerpts from this help file, provided that you mention the source.

A journey of a thousand li begins with a Single Step
- Chinese proverb

Introduction

Differences between versions 1.10 and 2.xx

The second version of the 32-bit debugger OllyDbg is redesigned practically from the scratch. As a result,
it is faster, more powerful and much more reliable than its predecessor. Well, at least in the future,
because some useful features from the version 1.10 are not yet available in 2.01.

Version 2.01 contains many new features that were not available in 1.10. Among them:

e Full support for SSE and AVX instructions. SSE registers are accessed directly, without code
injection;

< Execution of commands in the context of debugger, allowing run trace speed - with conditions and
protocolling! - of up to 1,000,000 commands per second,;

e Unlimited number of memory breakpoints;

« Conditional memory and hardware breakpoints;

* Reliable, analysis-independent hit trace;

e Analyser that recognizes the number (and sometimes the meaning) of the arguments of unknown
functions;

« Detaching from debugged process;

« Debugging of child processes;

e Option to pause on TLS callback;

e Option to pass unprocessed exceptions to the unhandled exception filter;

e Built-in help for integer and FPU commands;

e Customizable shortcuts;

e Support for multiple languages in user interface.

OllyDbg 2.01 overview

OllyDbg 2.01 is a 32-bit assembler-level analyzing Debugger with intuitive interface. It is especially useful
if source code is not available or when you experience problems with your compiler.

Requirements . Developed and tested mainly under Windows XP, but should work under any 32-bit
Windows version: NT, 2000, XP, 2003 Server, Vista, Windows 7 and so on. Old DOS-based versions (95,
98, ME) are no longer supported. That is, if you install Microsoft Layer for UNICODE, you will be able to
start OllyDbg and even set breakpoints, but | can't promise stable operation. Version 2.01 will not work
under 64-bit Windows yet! For a comfortable debugging you will need at least 1-GHz processor. OllyDbg
is memory hungry. If you debug large application with all features enabled, it may easily allocate 200-300
megabytes for backup and analysis data.

Supported instruction sets . OllyDbg 2.01 supports all existing 80x86-compatible CPUs: MMX, 3DNow!,
including Athlon extensions, SSE instructions up to SSSE3 and SSE4, and AVX instructions.

Configurability . More than 120 options (oh, no! This time it's definitely too much!) control OllyDbg's
behaviour and appearance.

Data formats . Dump windows display data in all common formats: hexadecimal, ASCII, multibyte,
UNICODE, 16- and 32-bit signed/unsigned/hexadecimal integers, 32/64/80-bit floats, addresses,
disassembly (MASM, IDEAL, HLA or AT&T). It also decodes and comments many Windows-specific
structures, including PE headers, PEBs, Thread data blocks and so on. You can dump system memory
(XP only), files and raw disks.

Help. OllyDbg 2.01 includes built-in help on all 80x86 integer and floating-point commands. If you possess
Windows API help (win32.hlp, not included due to copyright reasons), you can attach it and get instant
help on system API calls.

Startup . You can specify executable file in command line, select it from menu, drag-and-drop file to
OllyDbg, restart last debugged program or attach to already running application. OllyDbg supports just-in-
time debugging and debugging of child processes. You can detach from the debugged process, and it will
continue execution. Installation is not necessary!

Code highlighting . Disassembler can highlight different types of commands (jumps, conditional jumps,
pushes and pops, calls, returns, privileged and invalid) and different operands (general, FPU/SSE or
segment/system registers, memory operands on stack or in other memory, constants). You can create
custom highlighting schemes.

Threads . OllyDbg can debug multithread applications. You can switch from one thread to another,
suspend, resume and Kill threads or change their priorities. Threads window displays errors for each
thread (as returned by call to GetLastError).

Analysis . Analyzer is one of the most significant parts of OllyDbg. It recognizes procedures, loops,
switches, tables, GUIDs, constants and strings embedded in code, tricky constructs, calls to API functions,
number of function’s arguments, import sections and so on. It attempts to determine not only the number
of stack arguments in the unknown functions, but even their meaning. Analysis makes binary code much
more readable, facilitates debugging and reduces probability of misinterpretations and crashes. It is not
compiler-oriented and works equally good with any PE program.

Full UNICODE support . All operations available for ASCII strings are also available for UNICODE, and
vice versa. OllyDbg is able to recognize UTF-8 strings.

Names. OllyDbg knows symbolic names of many (currently 10800) constants, like window messages,
error codes or bit fields, and decodes them in calls to known functions.

Known functions . OllyDbg knows more than 2300 frequently used Windows API functions and decodes
their arguments. You can add your own descriptions. You may set logging breakpoint on a known or
guessed function and protocol arguments to the log.

Calls. OllyDbg can backtrace nested calls on the stack even when debugging information is unavailable
and procedures use non-standard prologs and epilogs.

Stack. In the Stack window, OllyDbg uses heuristics to recognize return addresses and stack frames. If
program is paused on the known function, stack window decodes arguments of known and guessed
functions. Stack also traces and displays the chain of SE handlers. If integrated stack walk fails, you may
switch to Dbghelp.dll.

Search. Plenty of possibilities! Search for command (exact or imprecise) or sequence of commands, for
constant, binary or text string (not necessarily contiguous), for all commands that reference address,
constant or address range, for all jumps to selected location, for all referenced text strings, for all
intermodular calls, for masked binary sequence in the whole allocated memory, for integer or floating-point
number and so on. If multiple locations are found, you can quickly navigate between them.

Breakpoints . OllyDbg supports all common kinds of breakpoints: soft (INT3 or several other commands),

4

memory and hardware. You may specify number of passes and set conditions for pause. Breakpoints
may conditionally protocol data to the log. Number of soft and memory breakpoints is unlimited: in the
extreme case of hit trace, OllyDbg may set hundreds of thousands INT3 breakpoints. On a fast CPU,
OllyDbg can process up to 20-30 thousand breakpoints per second.

Watches . Watch is an expression evaluated each time the program pauses. You can use registers,
constants, address expressions, boolean and algebraic operations of any complexity.

Execution . You can execute program step-by-step, either entering subroutines or executing them at once.
You can run program till next return, to the specified location, or backtrace it from the deeply nested
system API call back to the user code. When application runs, you keep full control over it. For example,
you can view memory, set breakpoints and even modify code "on-the-fly". At any time, you can pause or
restart the debugged program.

Hit trace . Hit trace shows which commands or procedures were executed so far, allowing you to test all
branches of your code. Hit trace starts from the actual location and sets soft breakpoints on all branches
that were not traced so far. The breakpoints are removed when command is reached (hit).

Run trace . Run trace executes program in the step-by-step mode and protocols execution to the large
circular buffer. Run trace is fast: when fast command emulation is enabled, OllyDbg traces up to 1 million
commands per second! Run trace protocols registers (except for SSE/AVX), flags, contents of accessed
memory, thread errors and - for the case that your code is self-modifying - the original commands. You
may specify the condition to stop run trace, like address range, expression or command. You can save run
trace to the file and compare two independent runs. Run trace allows to backtrack and analyse history of
execution in details, millions and millions of commands.

Profiling . Profiler calculates how many times some instruction is listed in the run trace buffer. With
profiler, you know which part of the code takes most of execution time.

Patching . Built-in assembler automatically selects the shortest possible code. Binary editor shows data
simultaneously in ASCII, UNICODE and hexadecimal form. Old good copy-and-paste is also available.
Automatic backup allows to undo changes. You can copy modifications directly to executable file, OllyDbg
will even adjust fixups.

UDD. OllyDbg saves all program- and module-related information to the individual file and restores it when
module is reloaded. This information includes labels, comments, breakpoints, watches, analysis data,
conditions and so on.

UDL. You may convert standard libraries supplied with your compiler to the UDL library and tell Analyser
to recognize library functions in the code.

Plugins . You may extend the functionality of the OllyDbg 2.01 by writing your own plugins (or
downloading plugins from the Internet).

Customization . You can specify custom fonts, colour and highlighting schemes.

Text-to-speech . For handicapped users: activate text-to-speech option, and OllyDbg will read the
selections.

And much more ! This list is far from complete, there are many features that make OllyDbg 2.01 the
friendly debugger.

(No) registration

OllyDbg 2.01 is Copyright (C) 2000-2013 Oleh Yuschuk. It is a closed-source freeware. For you as a user
this means that you can use OllyDbg for free, whether for private purposes or commercially, according to
the license agreement. Registration is not necessary. | have introduced it for the first version just to see

how popular my program is. The results were above any expectations. | was overwhelmed with the
registration forms, and this had noticeable negative influence on my productivity. Therefore: there is no
registration for the OllyDbg 2.01.

If you are professor or teacher and use OllyDbg for educational purposes , | would be very glad if you
contact me (Ollydbg@t-online.de), especially if you have ideas how to make my product more student-
friendly or better suited for the educational process.

Legal part

Trademark information. All brand names and product names used in OllyDbg, accompanying files or in
this help are trademarks, registered trademarks, or trade names of their respective holders. They are used
for identification purposes only.

License Agreement. This License Agreement ("Agreement”) accompanies the OllyDbg version 2.01 and
related files ("Software"). By using the Software, you agree to be bound by all of the terms and conditions
of the Agreement.

The Software is owned by Oleh Yuschuk ("Author") and is Copyright (c) 2000-2013 Oleh Yuschuk. You
are allowed to use this software for free. You may install the Software on any number of storage devices,
like hard disks, memory sticks etc. and are allowed to make any number of backup copies of this
Software.

The Software is distributed "as is", without warranty of any kind, expressed or implied, including, but not
limited to warranty of fitness for any particular purpose. In no event will the Author be liable to you for any
special, incidental, indirect, consequential or any other damages caused by the use, misuse, or the
inability to use of the Software, including any lost profits or lost savings, even if Author has been advised
of the possibility of such damages. In particular, the Author is not responsible for any damages caused by
the use of third-party plugins attached to the Software.

You are not allowed to modify, decompile, disassemble or reverse engineer the Software except and only
to the extent that such activity is expressly permitted by applicable law. You are not allowed to distribute or
use any parts of the Software separately. You may make and distribute copies of this Software provided
that a) the copy contains all files from the original distribution and these files remain unchanged; b) if you
distribute any other files together with the Software, they must be clearly marked as such and the
conditions of their use cannot be more restrictive than conditions of this Agreement; and c) you collect no
fee (except for transport media, like CD), even if your distribution contains additional files.

This Agreement covers only the actual version 2.01 of the OllyDbg. All other versions are covered by
similar but separate License Agreements.

Fair use. Many software manufacturers explicitly disallow you any attempts of disassembling,
decompilation, reverse engineering or modification of their programs. This restriction also covers all third-
party dynamic-link libraries your application may use, including system libraries. If you have any doubts,
contact the owner of copyright. The so called ,fair use" clause can be misleading. You may want to
discuss whether it applies in your case with competent lawyer. Please don't use OllyDbg for illegal
purposes!

Your privacy and security. The following statements apply to versions 1.00 - 2.01 at the moment when |
upload corresponding archives (containing OllyDbg.exe and support files) to Internet ("original OllyDbg").
They do not apply to any third-party plugins.

| guarantee that original OllyDbg:
- never tries to spy processes other than being debugged, or acts as a network client or server, or

sends any data to any other computer by any means (except for remote files specified by user), or
acts as a Trojan horse of any kind, with one exception: if you allow dbghelp.dll access to the

Microsoft Symbol Server, this DLL may exchange information with the Microsoft. The corresponding
option is turned off by default and you must activate it explicitly;

- neither reads nor modifies the system Registry unless explicitly requested, and these requested
modifications are limited to the following two keys:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug\Debugger
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug\Auto

- does not create, rewrite or modify any files in system directories without your explicit request;

- does not modify, unless explicitly requested, any executable file or DLL on any computer, including
OllyDbg itself;

- logs your debugging activities only on your explicit request (except for the File History kept in
ollydbg.ini and *.udd files with debug information). Even more, | guarantee that without your
allowance OllyDbg will create or modify files only in the directory where it resides and in the working
directories specified in the Options dialog;

- (last but by no means least) contains no apparent or hidden ,nag" screens forcing you to register
this program, nor any features that limit the functionality of the OllyDbg depending on the registration
or after any period of time.

Beware of viruses . Although I've checked the original archive with several virus scanners, please do not
assume that your distribution of OllyDbg is free from viruses or Trojan horses camouflaged as OllyDbg or
support routine. | accept no responsibility for damages of any kind caused to your computer(s) by any
virus or Trojan horse attached to any of the files included into archive, or to archive as a whole, or for
damages resulting from the modifications applied to OllyDbg by third persons.

Installation

OllyDbg requires no installation. Simply create new folder and unpack Odbg201.zip to this folder. If
necessary, drag-and-drop link to ollydbg.exe to the desktop to create shortcut. Under Windows 7, open
shortcut properties and activate "Run as administrator".

If you are a hardcore user and run OllyDbg on Windows NT 4.0 (no problems!), you will need psapi.dIl.
This library is not included.

Version 2.01 is not intended to work on DOS-based Windows versions, but this is possible provided you
install Microsoft Layer for UNICODE. Some very, very old versions of Windows 95 do not include API
functions VirtualQueryEx and VirtualProtectEx. These functions are very important for debugging. If
OllyDbg reports that functions are absent, normal debugging is not possible. Please upgrade your OS.
Anyway, Windows 95, 98 and ME are no longer supported. Use OllyDbg 1.10 It's free and compatible with
these systems.

Support

The available support is limited to the Internet page http://www.ollydbg.de. From here you will be able also
to download bugfixes and new versions. If you have problems, send email to Ollydbg@t-online.de. Usually
| answer within a week. Unless you explicitly disallow this, | reserve the right to place excerpts from
your emails on my Internet site

Full source code is available but will cost you money. This is a ,clean-room" implementation that contains
no third-party code. You can order either the whole source code or its parts like Disassembler, Assembler
or Analyzer. To get more information, send me a mail. By the way, Disassembler 2.01 is released under
GPL v3, you can download it from my page.

Description of .udd file format for any OllyDbg version is available on request. It is free.

Settings used in this help

There are many options that insfluence the appearance and the functioning of the OllyDbg. This help file
assumes that options are in their default state.

This also includes shortcuts. Most OllyDbg shortcuts can be redefined. If you have installed different
shortcuts, either use menu, or restore default shortcuts (Options | Edit shortcuts... | Restore defaults).

First steps

Starting an application

The best way to get familiar with a new program is by making simple exercises. | assume that you are
briefly familiar with the architecture and command set of the 80x86 processor. Also you understand the
concepts of process, thread and module and know that Portable Executable file consists of headers and
sections.

There is a small test application in the OllyDbg distribution archive named - surprise! - Test.exe.
Start OllyDbg and load Test.exe. You may, for example, drag and drop this test application from Explorer,

or press F3, or choose File | Open from the main menu. OllyDbg will open application, analyse its code
and pause at the entry point of the main module. (Main module is the Test.exe itself):

OllyDbyg - Test.exe - [CPU - main thread, module Test] 10| x|
IE‘ File %ew Debug Trace Plugins Options Windows Help _|E’|5|
H lr- - e =
x| w > 0] w1 AU MJJJJJJJJ B|M[H| i
Address | Hex dump Cammnand Comrent s Registers [FFPLUI -
=-EB 18 JHP SHORT BRd4E1a1z = | ERE BEBa0Rsa0n I—
[EEETERNETEE =11 OB && CHAR "f" N ECK BE1Z2FFER
HE4E1EA3 62 OB &2 CHAR "b* EDX VCOREES4 ntdll.KiFastSustemCal lRet
HEad4E18684 2R OB =2A CHAR ":" EEX FFFO48860
HEa4E18685 43 OB 42 CHAR "C* ESF BE12FFC4
HEa4E 1885 2B OB 2B CHAR "+ EEF B81Z2FFF&@
Had4E18a7 2B OB ZE CHAR "+ ESI BE1ZADED
soe) |® e gy e el
AR4E1RER 4F OB 4F CHAR "0° EIF B840168668 Test.<ModuleEntrwPointX
HEa4E186E 4B OB 4B CHAR "K* C @ ES @Bz3
HEa4E188C L] HOP F 1 C5 B8lB
Ba4Ea1aa0 EZ OB E9 A @ S5 \8z3
EEdaiEne |- | CCE14186 OO OFFSET ___ CPPdebugHook =2 1 D5 @823
W1‘3 - (WE =T =k RERrr] II | =i} rounen A1ci0DC S a FS 8838 32blt ?FFDFBBB[FFF]
Oest=Test.0B481812 0T B G55 eEEE HULL
=—AD0A
08 LastErr B0EEAEEZ2 ERROF_FILE_MOT_F
» || EFL @8@@ez4: (MO, ME.E,BE, M5, PE,GE,LE] =
Address [Hex dump ASCIT & Address [Value Comments -
Q0415000 (00 00 54 A0 40 00 00 20| &0 A0 40 00 00 1< 55 4B T IE 2 A FCR16D4F | RETURH to kei™
00415000 |41 00 00 20 &4 At 40 00 00 20 FO &G 40 00 00 00 A pE BE1ZFFCE| @elz203AR
00415020 [EC B 40 0000 00 FO BS 40 00 00 05 EQ c2 40 00 \‘n@ Eu LB |aRE SS%%EEE% ?Eéﬁﬂgss
00415030 (00 04 70 €0 40 00 00 OA[AC E1 40 00 00 OA O ES| Jph@ “aam fe AE12FFO4| SBE4REED| RETURM £room H
00415040 (40 00 00 OA EQ E4 40 0000 OA CC EE 40 0000 OL|B 338 I98 |l a0i5rr0s| Bmisrroo -
o o ol I T el ol o T O T O e Il = N B T B T B w A B I Y T I s T ﬂ'ﬁ It-":ﬁ | A
|Entry point of main module | |F'auseu:|

What you will see depends on many options that control OllyDbg's behaviour, but your picture will be
similar to the one above. OllyDbg is an old-style MDI application without graphical bells and whistles. Its
appearance is optimized for performance. Small default fonts and narrow borders maximize the amount of
information you can see on the display. Of course, you can always adjust colours and fonts so that they
best suit your eyes.

Most of the OllyDbg's screen above is filled with the CPU window. This is the window where you will
spend most of your time debugging the application. It consists of five panes:

Disassembler Registers

Info

Dump Stack

Disassembler lists commands in the selected piece of memory. For each command, information includes
hexadecimal address in memory and its label, binary command code, command disassembled to text and
comments associated with the command.

If application is paused, current execution point (where register EIP points to) is marked black in the
Address column. Unconditional breakpoints are red and conditional have magenta background.

Most comments are created by Disassembler and Analyser. They help you to understand the meaning of
the code. You may add your own comments, too.

If you are the beginner, select command and press Ctrl+F1 to get help on this command. (Currently only
integer and FPU commands are supported).

Info pane displays additional information about the first selected command. It may include the contents of
operands and their decoding, list of known jumps and calls to the command, for conditional commands -
whether jump is taken, if available - source line, loop variables if command belongs to the recognized
loop, and more.

Registers pane displays the contents of registers for the selected thread. Letters C, P, A and so on stay
for the individual CPU flags (Carry, Parity, Auxiliary Parity...). The flags are parts of the Flag register EFL.
Field Last err is not a register, it displays the contents of memory where Windows API functions store error
codes. For example, if call to CreateFile("abc.def",...,OPEN_EXISTING...) was unable to find the file
abc.def, it will set last error to 0x00000246 (ERROR_FILE_NOT_FOUND).

The contents of register or bit is highlighted if it was changed since the last pause or if it was modified by
the user.

FPU registers are shared between FPU, MMX and (in the case of AMD) 3DNow! command sets. To
change their presentation, use popup menu or press bar on the top of the pane.

Stack pane shows stack associated with the selected thread. Address in ESP is marked black in the
Address column. OllyDbg attempts to recognize stack frames and marks them with parentheses to the left
from the contents. It also highlights doublewords that may represent possible returns. But care - these
may be the remnants of the previous calls! A condensed view of the stack is available in the Stack
window.

Dump initially displays the data area of the main module. You may select any location and many different
data presentations here. Dump is thread-independent.

The status bar at the bottom shows debugging messages and displays current state of the debugging.

Red text "Paused" in the right bottom corner means that application is suspended by the OllyDbg. Another
possible states are "Loading", "Running", "Tracing", "Terminated" etc.

10

Lesson 1 - Breakpoints

In their simplest form, breakpoints are requests to pause execution when some address is reached or
accessed. OllyDbg also supports conditional breakpoints (will pause execution only if some condition is
fulfilled, like ECX==1) and logging breakpoints (they protocol some data to the log without stopping the
program).

There are three different types of breakpoints: software, hardware and memory. To set soft breakpoint,
debugger replaces first byte of the command with another command that will cause exception or interrupt
when it executes. Usually this is a dedicated command INT3 (binary code 0xCC), but other privileged
commands, like HLT or CLI, can also be used instead.

Load Test.exe into the OllyDbg as described above. Status will change to "Paused". (If not, open Options
| Start, change first pause to Entry point of main module and restart). Select Debug | Run from the

main menu, or press F9, or press button with the right triangle ﬂ Status will change to "Running" and
you will see the main screen of the test application.

Now press button "Read [_Break] ". You will see the message "[Byte _Break] = 0x90 (NOP) ". When you
press this button, test application reads byte at symbolic address _Break and displays its contents.

Change focus to Disassembler pane by clicking somewhere inside it. Have you noticed the thin black
contour around the pane? Now press Ctrl+G (or right click and select Go to | Expression... from the pop-
up menu) and start typing "_Break":

Enter expression to follow

Enter address expression:

|8l

bd atching labels:

X
[Te=zt._ Break j

Test._ _hormm_stub_FreeMem

Test._ _bormm_stub_GetMem

Test.__ _hormm_stub_FReallocHMem

Test.__bhormm_stub_Terminate

Test._ _bhormm_pfn_FreeMem

Test.__ _bhormm_pfn_GetMem

Test._ _bhormm_pfn_ReallocHMem

Test.__bormm_pfn_HeapRelease

msucrt._heep) ;I

Fallow expression Cancel

The appearing window allows you to change address of the memory displayed in the Disassembler
window. You may use direct addresses, like 401023 (hexadecimal address 0x00401023), symbolic labels
like Break or expressions like ECX+EDX*4. Note that all constants are assumed to be hexadecimal. If
you want to specify decimal number, follow it with a decimal point: 100 means 0x100;5 = 2564, and 100.
means 100,,. (And 100.0 means floating-point number 100.0 and is not allowed in the address
expressions).

As you type, the list at the bottom will show you all labels that contain the typed text as a substring. The

label we are searching for is _Break in the module Test, therefore its full name is Test._Break. Click it
once and press Follow label . (For some subtle reasons, doubleclick does not work):

11

CPU - main thread, module Test

Address |Hex dump Command
bE4E 2364 L- ooos FSTF ST(R@)
HE4EZ23B6 | k- C2 RETH
_Break [5 o] HapP
HE4E23B82 | k- C2 RETH
HE482389 Q8 Hap

Disassembler repositions to the procedure _Break. Note that Test.exe is under permanent development,
and addresses may differ from the picture. The procedure consists of two commands: NOP, followed by
RETN, and does perfectly nothing. Label _Break points to the command NOP with hexadecimal code
0x90. This is what the message in the debugging application means.

Line with NOP is still selected? Now press F2. This is a shortcut for "Toggle breakpoint". Red address
background indicates that unconditional software breakpoint was set. OllyDbg has replaced the byte at
address 004023AB with INT3:

CPU - main thread, module Test

Address |Hew dump | Command
Bo4nzoE+ || - OODS FSTP ST(@)
gaanzaeelL. €3 RETH

b=
BE4E23E2 [- RETH
BE4E23E2

Press "Read [_Break] " again. Now the message is different: "[BYTE _Break] = 0xCC (INT3) ". So the
memory of the process is pnysically changed. But Disassembler still displays the old command? Yes,
because it takes care of the breakpoints and replaces them with original data before the memory is
displayed. But, as you can see, soft breakpoints are visible to the application. For example, some viruses
check critical system functions and don't do any evil if there are breakpoints set. Moreover, if you set soft
breakpoint on data, the program may misbehave or crash. You are allowed to set soft breakpoints only

on the first byte of the command!

The breakpoint is set and application is active. Press "Call _Break ". OllyDbg pops up. The status of the
debugged program is changed to "Paused" and there is a message, "Breakpoint at Test._ Break ". What
happened? Command INT3 has generated an interrupt. Windows has paused the application and passed
this interrupt to the debugger. Now you can do whatever you want - read registers, analyse memory or
make patches.

Press F9 or button ﬂ (Run). Program continues execution. Assure that line with breakpoint is still
selected and press F2 again to remove the breakpoint.

Now right click tyhe command and select Breakpoint | Hardware... from the menu. OllyDbg will ask you
when this breakpoint should trigger: when command executes, when memory is accessed or when
memory context changes. Because this memory location is recognized as a code, OllyDbg suggests
breakpoint on execution:

Hardware breakpoint at Test. Break x|

Break. on: Drata size: Hardware glat;

i ?E:-:eu:utiu:-rif % Bute Ol |Em|:-t_l,l

™ Access (AW € o - IEITIFIt_','

= white £ Dword - |Em|:ut_l,l

4 |Empty

[T Dizabled oK Cancel

12

Accept this suggestion by pressing OK. Now red background appears in the memory dump, indicating
hardware or memory breakpoint:

[8 cPU - main thread, module Test

Addres= |Hex dump Command

HEGEZIES l- oons FSTF STi@)
AR4AZIEA (ke O3 RETH
_Break [5 o8 MOP
HE4EZ3ES (k- L3 RETH
BE4E23E9 Eln] HOF

Press "Read [_Break] ". The code is NOP, hardware breakpoints are invisible to the application. (Well, not
exactly. Application may read thread's context and analyse debugging registers). Now press "Call
_Break" and the breakpoint will be hit.

Run program, call hardware breakpoint dialog again and change breakpoint type to Access (R/W) . Press
"Call _Break " - nothing happens. Press "Read [_Break] ". The application will stop, but this time not at
address _Break:

[8 cru - main thread, module Test

Address |Hex dump Command C
Gad4aiBsz[| - ES B2828068 | JHF 884081E39
podoiesy(l » Crds ES BYZS MOV L[OWORD EEBP-181,_Break C

BE4a1ESE SB45 ES MOW ERH, COWORD EEP-151
aa4aies1 |1 - 3302 #OR EDK, EDOF
AE4EAIESS)« BA1A rMou OL, [BYTE ERX]

= B95E F2 MOU COWORD EEBP-21, EDX
BE4aips2)|] - FFPS F2 PUSH C[OWORD EEP-21 r

Note the message in the status bar:

|Haru:|ware breakpoint 1 at Test.00401E595 - EIF points to next instruction

Hardware breakpoint on data access triggers after data is accessed. Check register EAX. It contains
004023B7 - in our example, this is the addres of the procedure labelled as _Break. This address was read
in the command at 00401B93: MOV DL,[BYTE EAX]. But hardware breakpoint was reported at the
following command.

Hardware breakpoints are very convenient. If, by mistake, you set hardware breakpoint on data, nothing
will happen. Hardware breakpoint on execution will not trigger if memory location is accessed as a data.
But hardware breakpoints are very scarce. There are only 4 of them, and there are some limitations
concerning their alignment. Therefore it's time to learn memory breakpoints.

Remove the hardware breakpoint. Oh, Disassembler points to different memory location and you don't
know how to come back? Either call Go to window, or click EAX in Registers pane and from the pop-up
menu choose Follow in Disassembler . You may also call Disassembler menu and choose Go to |
Previous location or press gray Minus button on the digital block (rightmost on your keyboard, bad luck if
your laptop is not full-size). Disassembler and Dump keep separate histories of displayed addresses and
allow you to walk these histories in both directions.

After hardware breakpoint is removed, select Breakpoint | Memory... and check On execution . Run the
program. Some strange thing happens - status bar starts blinking. It displays something like "6000 events
per second ". Memory breakpoints use hardware memory protection of the 80x86 architecture. It allows to
disable access to individiual memory pages. Each memory page is 4096 bytes large. If one disables
memory access on execution, then each time any command from this memory block is hit, hardware
generates an exception. If exception is a false positive, OllyDbg continues execution but counts this event
in the status bar. Exception processing takes significant time. Memory breakpoints may be very slow
But the number of memory breakpoints is unlimited.

Press "Read [_Break] ". As expected, memory breakpoint is not visible to the application. Press "Call
_Break" and OllyDbg will report memory breakpoint on execution.

13

OllyDbg preserves breakpoints between debugging sessions in the .udd file. To verify this, close OllyDbg

and restart it again. Reload Test.exe (Ctrl+F2 or ﬂ - "rewind"), run it and press "Call _Break". The
program will pause at the same position as the last time.

Lesson 2 - Patching the code

Start Test.exe (without OllyDbg!) and press button labelled "0 : 0". Application will call routine that divides
integer 1 by integer 0. As expected, program crashes:

Test application for OllyDbg ¥2: Test.exe - ﬂ

‘ The exception Integer division by zera,
(Dxc0000094) occurred in the application at location 0x00401f5a,
Click on OF ko kerminate the program
Click on CAMCEL to debug the program

Zancel |

We are going to locate invalid command and remove it from the code.

Load Test.exe into the OllyDbg and run it (F9). Now press button "0 : 0" again. The execution will pause
and status bar at the bottom will display the message "Integer division by zero - Shift+Run/Step to
pass exception to the program "

Look at the CPU Disassembler pane:

[3 cPU - main thread, module Test

Address Command Comment s a | Registers [FRUI
_cerodiv ¥ BE BleobEsd | HMOU EAR, 1 ERX DEEEDEG1
HEd4E1iF2E || « BA DEB0EEEE | MOV EDR, 8 ECHX DEEEHEEE
HE4E1IF20 1] « B9 HBEAEEEEE | MO ECH, 8 EDX HEBEHEEE

- FrF1 DIV ECH EE: HDEEEHEEE
HE4E1F34 L. C3 RETH ESF bEl1ZzF99s

EIP points to the command DIV ECX. If you don't know what this command does, press Shift+F1 (or
select Help on command from the context menu):

=5

Command: DI ECK
Henw dump: FFF1 ﬂ

Divides the walue in the register pair EDXiERX, treated as
yn=igned &4-bit number, by the contents of 32-bit register
ECi. Guotient iz stored to EAX, remainder to EDX. Result is
truncated towards B. Flags after this operation are

undef ined. j

Brief glance into Registers - ECX is currently 00000000, hence division by zero. We are in the subroutine
labelled as _Zerodiv with the following code:

MOV EAX,00000001
MOV EDX,00000000
MOV ECX,00000000
DIV ECX

RET

Now we have several options. We may comment the whole routine out, replacing MOV EAX,00000001

with RET. Or we may load ECX with 1 instead of 0. Or we may replace DIV ECX with NOPs. Let's choose
the third method.

14

Click on DIV ECX. When this command is selected, right click on it and choose Assemble... from the
menu:

[8 cPU - main thread, module Test

Addres= | Her dump Command Comments -
cerodiv (% BE DlB@oEaa |MOU EAR, 1

BEda1FZS ER BEEEEEEE | MOU EDW, @

GE4AlFZ0 ||« B9 BREEEEEE |FMOU ECH. 6 _I
EEEEE=EE | - F7F1 GLR =

GE4a1FS4 L. C3

Puzhfladfs 16 Backup E
BedalFse ||« 17 Edit

aa4alFsT ||« 3G =

BE4A1FSS ||« 58 add label... Colan (:)
gadalFss (L. C3

ageieeai[f SEne M

aed4aiFsF || - ac Add comment. ., Semicalon ()
GE4a1F4a || « 58 :

eaqalF41 (L. C3 Ereakpoint *

—Repeflagrs F3:9
Assemble window will appear:

x

00401F32 |l e

[Keep size
¥ Fill rest with NOPs Assemble Cose |

Note two checkboxes. If Keep size is checked, you will be able to modify only the selected memory (in our
case, as DIV ECX is 2 bytes long, only the addresses 00401F32 and 00401F33). This prevents from
unwanted overwriting of important code.

New command is not necessarily as long as the original. Suppose you want to remove short jump to the
destination that is 8 bytes back, binary code EB F4. You replace it with NOP (90). But NOP is only one
byte long. What you will get is the sequence 90 F4 that disassembles to NOP; HLT. If you attempt to
execute this sequence, the program will crash, reporting privileged instruction. Uncontrolled command
remnants can be dangerous. Therefore | recommend to always activate Fill rest with NOPs . If new
command does not fit exactly, the rest will be automatically filled with harmless NOPs.

Back to the lesson. Check Fill rest with NOPs, type NOP and press Assemble (or Enter key on the

keyboard). Window will ask you to enter next command, but we don't need it. Close dialog. This is what
you will see:

[8 cPU - main thread, module Test

Addres= | Her dump Command Comments -
_cerodiv ¥ BE DleooEsd MO EAR, 1

HEd4@EiF22 || « BA DEB@EEEE | MO EDR, 8

HE4AlF20 1] « B9 DEBEEEEE MO ECH,8 _I
[FEECEIg=l - YH HOP

HE4a1F33 ELE} HapP

BadaiFs4 (L. C3 RETH

_Fushfladri$ 16 FUSH 55

HE4@aiF3s ||« 17 FOF 55

HE4A1F37 || = 9C FUSHFD

HE4aiF3az || - 58 FOF ERX

HE4a1F39 (L. C3 RETH

_Moweflagpd 66&:8COA Mo Ax, 55

HEd4alFso || - SEDA MaW 55, ERX

oE4@aiFaF || = 9C FUSHFD

bEd4aiF4a || - 53 FOF ERX

bE4aiF41 |k C3 RETH

Command DIV ECX was replaced by a sequence of two NOPs. Note that modified commands are
highlighted. To keep track of modified commands, OllyDbg has created backup of the old code section.
This operation is memory-consuming (backup is as large as the code section) but very useful. You can

15

look at the old code, undo your changes or search for modifications. (Backup is also helpful if code you
are debugging is self-modifiable).

Also note that parenthesis which indicates the extent of the procedure _Zerodiv is nhow broken. OllyDbg
removes analysis data from the modified code.

Run program and press "0 : 0" again. Nothing happens. This indicates that our patch is correct. But
changes will be lost when application terminates. We need to copy them back to the executable file.
Usually this is a complicated task, but OllyDbg takes care of it. Select modified code (two NOP
commands), call context menu and choose Edit | Copy to executable . OllyDbg will create new dump
window, read executable file, locate address corresponding to the selection and copy our modifications to
the file dump:

[#] File . Oleg,0dbg2’, TEST', Test.exe o =] |
Hddress |Hex dump Cammand Enmﬂ
BEEE1E3Z] 20 MHOF

BEARLS3S| 20 HOF _I
BEAR1S34 [C3 RETH

BEARISSE(16 FUSH S5

BEAEAIS3E(17 FOF S5

BEEEIEST(T FUSHFD

BEEE1ESS| B2 FOF ERX

BEEE1S39(C3 RETH

BEEE1S3A| &6:8C00 MOW A, 55

BEEE1S30(SEDA oL 55, EAE

BEARISSF | SC FUSHFD

BEEAIE4E(52 FOF ERX

BEEEIE4] [C32 RETH

BEAE1E42| F3:9C REF PUSHFD

BEEE1E44 | B2 FOF ERX

BEEE1S45(C3 RETH

BEAE1S46(0 FUSHFD j

You may add other patches, either through CPU Disassembler or directly. After you are ready, right click
in the file dump and choose Save file... You will be asked to confirm this action, just press Yes. Another
dialog will appear, asking you to select file name. We don't want to change the original Test.exe. (This
may be not possible if test application is still running). Select different name, say, Testl.exe and press
Save.

Start Testl.exe and press "0 : 0". There is no exception. We have successfully patched the program.

Lesson 3 - Run trace

When program executes jump to wrong location, it may be extremely hard to find the location of the invalid
jump.

There is a feature called Run trace. When you start run trace, OllyDbg executes debugged application
step by step, one command at a time, and protocols execution.

Run trace is slow, slooooow. Modern CPU can execute several billions commands in a second. When run
trace stops debuggee after each command, execution speed is limited to maybe 30 thousand commands.
If fast command emulation is enabled (Options | Debugging | Allow fast command emulation), OllyDbg
usually traces 300,000 to 600,000 commands per second. This speed is sufficient for simple GUI
applications like Test.exe.

Another drawback of run trace is that currently it can trace only single thread. If error is caused by the
interaction of two threads, run trace will never catch it. But Test.exe has only one thread.

Now let's begin our lesson. Open Test.exe in OllyDbg, start it and press button labelled "JIMP 123456".
Exception! OllyDbg reports "Access violation when reading [00123456]", but CPU Disassembler is empty.
There is no memory at address 00123456.

Next attempt. Set run trace options (Options | Run trace). In our case, the only important option is Don't

16

enter system DLLs . It must be unchecked because jump is executed from the window's callback function
on button message. Restart the application (Debug | Restart or press ﬂ) and run it. Changing

debugging mode "on the fly" is not allowed. Pause program (ﬂ) and start run trace (ﬂ). Note that status
changes to "Tracing" and status bar blinks displaying something like "120672 events per second”. Run
trace causes many debugging events, usually one per executed command. Switch to the application's
window (note how slowly it redraws) and press "JMP 123456".

Instead of crash, this time you will see the error "OllyDbg is unable to step over the command at (possibly
invalid) address 00123456. Memory is not readable". Cancel it and open run trace protocol (View | Run

trace or ﬂ):

JR1=TES
Eack Thread [Module | Address | Command Referenced mem|Registers modif icec a
14, main Test BE4@1537 | AMD CX, FFFF

13. main Test BE4E153C) MOUZE ERE, Ci ER¥=BBEBA3F3

1z. main Test HE4E153F | CHP ERR, 3F7

11. main Test AEdA1S44 | J5 SHORT B@481599 -

1@, main Test HE4E1599) CHP ERRX, 3FE

9. main Test BE4E159E | JG SHORT @8481503

2. main Test BE4a15A8(JE 8481309

7. main Test BE4A15AE| ADD ERX, —3FS ERx=888868061

G, main Test BE4E15AE| CHP ERX, S

E. main Test BE4E1SAE| JA BE4E1ALE

4. main Test BE4A15E4 | JMP [OWORD ERX#4+4@15EBE] | [BE4R15BF 1=Tes

2. main Test BE4AL3EE| CALL _MHirvana % ESP=@R1ZF932

2. main Test _Miruwana| MO ERX, 1223456 ERX=88123455

1. main Test BE4E1F71 | JMP ERX j
G. main AE1 23456 (Py bt

The last command (or, rather, the lack of such) is placed at address 00123456. The last but one is JMP
EAX at address 00401F71. As one can see from the last column, register EAX at this moment contains
00123456. Bingo! We have found the source of the problem.

17

Test.exe

Test application for OllyDbg v2

Proceszes and threads:

Start thread | Suzpend last | Hide |ast I FatalE «itf] |
MHew process | MHew suzpended | Load ws2_32 I Unload w2 32 |
CurentDiic | Sleep(5000) |
Exceptions:
Setfiter | SetvEH | Read [00000000] | oo |
NER. T | REPFSINTT | uMPi1za4sE |
Stack owerflow | 1.0:00 | Set Trap | Hard BF in thread |
Drebugging:
POPSS/PUSHF | MOV SS/PUSHF | REPE PUSHF | Nt |
Stings | StingW | Read[Break] | Cal _Break |
Zwdlloc(0] | Setvars |
Close |

Test.exe allows you to learn extended features of the OllyDbg. We have already used it in the lessons.
Most of the code examples in this manual are based on this application.

You may download the source code of Test.exe from my site, www.ollydbg.de. Note that | constantly add
new features and may modify existing. Therefore addresses may differ and new buttons may be added.
To find code, use exported labels.

Here is the brief explanation of actions associated with each button. Italic text in the parenteses is the
name of the associated label, if any:

Start thread (_Thread)- starts new thread that opens window and counts (rather imprecisely) 100-
ms intervals. If you close window, thread terminates;

Suspend last - suspends last created thread. You can resume it from the OllyDbg's Threads
window;

Hide last - attempts to hide last created thread from the debugger (NtSetinformationThread(), code
0x11). This feature is OS-dependent. If hiding is not supported, you will see the error message;

FatalExit() - calls FatalExit(0);

New process - starts new instance of Test.exe. If option Debug child processes is checked,
OllyDbg will start new instance and attach it to the newly created process;

New suspended - same as above, but new process is initially in the suspended state (does not
run);

Load ws2_32 - loads library ws2_32.dll. Why ws2_32? Because it is available on all Windows
versions and loads another library, ws2help.dl;

Unload ws2_32 - asks to unload ws2_32.dll from the memory;

18

Current Dir - displays current directory as reported by GetCurrentDirectory();
Sleep(5000) - executes Sleep(5000) - 5 seconds long pause;

Set filter - installs custom filter for unhandled exceptions by calling SetUnhandledExceptionFilter().
Note that debugger is normally not allowed to pass exception to this filter. OllyDbg uses tricks to
persuade OS to call this filter. This behaviour is controlled by the option Pass unprocessed
exceptions to Unhandles Exception Filter

Set VEH - adds handler to the chain of the Vectored Exception Handlers (VEH). To protect
application from viruses, Windows scrambles this chain using session-unique key. Therefore
OllyDhg is able to walk VEH only if process was created by the OllyDbg itself and not if it was
attached to the already running process;

Read [00000000] (_Accessviolation) - asks Test.exe to read contents of the memory at address
00000000. Usually this leads to memory access violation. However, you may press ZwAlloc(0) to
allocate memory block at location 0!

0:0 (_Zerodiv) - divides 0 by 0, causing integer division by zero;

INT3 (_Int3) - executes INTS3;

INT ff (_Intff)- executes INT OFFh;

JMP 123456 (_Nirvana) - executes jump to unallocated memory page JMP 0123456h;

Stack overflow - makes infinite recursive call, overflowing stack;

1.0:0.0 (_Fzerodiv) - divides floating point number 1.0 by floating 0.0, causing floating-point division
by zero. Note that due to the logic of floating coprocessor, this error is reported on the next FPU

command. To find invalid command, one must follow Last cmnd in the Registers pane;

Set Trap (_Settrap) - sets bit T (Single-Step Trap) in the register EFL, causing Single Step
exception;

Hard BP in thread - sets hardware debugging breakpoint O in the last created thread, causing
Exception Single Step (all debugging exceptions are routed to the same interrupt and Windows
makes no attempts to distinguish between them);

POP SS/PUSHF (_Pushflags) - executes commands PUSH SS; POP SS; PUSHFD and displays
contents of the top of the stack. When OllyDbg 1.10 traced this sequence, it pushed flag T;

MOV SS/PUSHF (_Moveflags) - executes commands MOV AX,SS; MOV SS,AX; PUSHFD with
effect similar to the previous button;

REPE PUSHF (_Repeflags) - executes undocumented command REPE:PUSHFD. When OllyDbg
1.10 traced this command, it pushed flag T;

INT 2D (_Int2d) - executes INT 02Dh;
String A - executes OutputDebugStringA("Debug string (ASCII)")
String W - executes OutputDebugStringW(L"Debug string (UNICODE)") ;

Read [Break] - reads and displays byte at address _Break. This address is an entry of a small
subroutine that never executes:

_Break: NOP
RET

19

Normally, if you press the button, test routine repotrts [BYTE Break] = 0x90 (NOP) . Try to set soft
breakpoint at address _Break and press button again. Now the message reads: [BYTE Break] =
0xCC (INT3), indicating that NOP is replaced by a 1-byte breakpoint INT3.

Call _Break - calls function _Break() described above. It does nothing, unless breakpoint is set.

ZwAlloc(0) - allocates 1 page (4096 bytes) of memory at base address 0x00000000. Yes, this is
possible!

Set vars (_ppi and _rect in data section) - increments internal counter by one and assigns its value
to variables **ppi and rect[2][3].right. These variables are declared as

int **ppi;
RECT rect[4][4];

There are also several places that highlight the features of analysis:

Nestetdloops - five short nested loops:

int _export Nestedloops(void) {
inti,j,k,l,m,n;
n=0;
for (i=0; i<10; i++) {
for (j=0; j<20; j+=2) {
for (k=0; k<30; k+=3) {
for (I=0; 1<40; 1+=4) {
for (m=0; m<50; m+=5) {
n++;
h
h
h
h
h
return n;

h
Nestedcalls - calls to functions that get calls to functions as their arguments:

int _export Sum(int x,int y) {
return x+y;

I3

int _export Nestedcalls(void) {

intn;

n=Sum(Sum(Sum(1,2),Sum(3,4)),Sum(Sum(5,6),Sum(7,8 N
n+=MulDiv(MulDiv(1,1,1),MulDiv(1,1,1),MulDiv(1,1, 1));
return n;

I3

20

Assembler and disassembler

General information

OllyDbg 2.01 supports all 80x86 commands, FPU, MMX, 3DNow!, SSE, SSE2, SSE3, SSSE3, SSE4 and
AVX extensions. Please note following peculiarities and deviations from Intel's standard:

REP RET (AMD branch prediction bugfix) is supported,;

Multibyte NOPs (like NOP [EAX]) are supported. However, Assembler always attempts to select the
shortest possible form, therefore it may be hard to set the required NOP length;

FWAIT is always separated from the following FPU command. Assembler never adds FWAIT, for
example, FINIT is in fact translated to FNINIT etc.;

Assembler understands no-operand forms of binary FPU commands (like FADDP), but Disassembler
always uses two-operand form (FADDP ST(1),ST);

LFENCE: only form with E8 is accepted (OF AE E8);

MFENCE: only form with FO is accepted (OF AE FO);

SFENCE: only form with F8 is accepted (OF AE F8);

PINSRW: register is decoded as 16-bit (only low 16 bits are used anyway);

PEXTRW: memory operand is not allowed, according to Intel,

INSERTPS: source XMM register is commented only as a low float, whereas command may use any
float;

Some FPU, MMX and SSE commands accept either register only or memory only in ModRM byte. If
counterpart is not defined, Disassembler reports it as an unknown command. Integer commands, like
LES, report in this case invalid operands.

SSE4 commands that use register XMMO as a third operand are available both in 2- and in 3-operand
formats, but Disassembler will show only the full 3-operand form;

Assembler accepts CBW, CWD, CDQ, CWDE with explicit AL/AX/EAX as operand. Disassembler
shows only implicit no-operand form;

16-bit AVX floating-point numbers are decoded as hexadecimal short numbers.

Disassembling modes

OllyDbg supports four different decoding modes: MASM, Ideal, HLA and AT&T. They are controlled by the
option Code | Disassembling syntax

MASM is the de facto standard of the 80x86 assembler programming:

[3 cPU - main thread, module Test

Address |Hex dump Command Comments -
HEd4E1 190 s BS DC&l4186 MOWU ERH,OFFSET blE41510C

Gad4aiifi|) - ES B2SCH0EA CALL 88483EES

Gad4alife() = Al ECEld4166 MOy ERX,DWORD FTR [4161EC]

ge4El 1R - ZBEBS EBe14100 | CHMP ERR,DWORD FTR [4161E81]

EE4A11IEL[] =~ 74 8& JE SHORT @B4a11B9

BE4E11ES() » 5@ FUSH ERX hFoduy le =» [4161ECT = HULL
FEdEl 1B () » ES S53FA16E CALL <JMP.%KERMELZZ.Freclibrary KERHELZZ. Freel ibrary
AE4A11E9(L> C3 RETH T

21

Ideal mode , introduced by Borland, is very similar to MASM but decodes memory addresses differently:

CPU - main thread, module Test

Address | Hex dump Command Comment < -

aa4a1izcirs B3 DCEl416R MoU ERX,OFFSET B@41610C
AE4E11A1|1 = ES B2SCHBBER CHLL 8a483ESS
EE4E11RE| - Al ECE1416R Mo ERX, COWORD 4161EC]

AE4E1 1AL - 2BES EBS14168 | CHP ERX, [OWORD 4161E6]

BE4E11EBL|] -~ 74 86 JE SHORT BE4B@11B9

aa4a11B2|] - 58 FUSH ERX hModu le =% [41&61ECT = HULL
aa4E11B4|1 - E2 35SFA16A CALL <JMP.&%KERMELZZ2.Freelibrary KERMELZ2. Freel ibrary

cod4El 19 L O3 RETH i

High Level Assembly language , created by Randall Hyde, uses yet another, functional syntax where
first operand is a source and operands are taken into the brackets. HLA is a public domain software, you
can download it together with excellent documentation, tutorials and sources from
http://webster.cs.ucr.edu. Example of HLA syntax:

CPU - main thread, module Test

L]
Address | Hex dump Command Comment < -
ARd4El19Cirs BE DC&14168 MO [OFFSET BR41&610C, ERX]
EE4El1AL() - ES B2ECHABEA CALL ©8483E5S
EEd4El1fE() » Al ECE1416H MOy (CTYPE OWORD 41&1EC],ERX]

Ea4el 1A} - 2BBE EBeldien | CHP CEAX, CTYPE DWORD 41:61E81)

BE4E11EBL|] -~ 74 86 JE BE4E11ER9

aa4a11B2|] - 58 FUSH (ERH] hModu le =% [41&61ECT = HULL
aa4E11B4|1 - E2 35SFA16A CALL <JMP.&KERMELZ2.Freelibrary KERMELZ2. Freel ibrary

cod4El 19 L O3 RETH i

AT&T syntax is popular among the Linux programmers:

[3 cPU - main thread, module Test

Address |Hex dump Command Comments -
EE4E1i19C| s BS DCE14160 MOUL OFFSET BR41&10C, HEAX

Gad4aiifi|) - ES B2SCH0EA CALL $88483EES

Gad4alife() = Al ECEld4166 MOUL 4161EC, ZERX

HE4al1RE|) - B8t EBcidlen | CHPL 4161E8, KERX

EE4A11IEL[] =~ 74 8& JE fBE4011B9

BE4E11ES() » 5@ FUSHL XERX hFoduy le =» [4161ECT = HULL
FEdEl 1B () » ES S53FA16E CALL #<JrMP.%&KERNELZZ.Freelibrary’ |LKERMELZZ. Frecl ibrary
AE4A11E9(L> C3 RETH T

Disassembler is configurable. Here is another possible layout in the AT&T mode:

[3 cPU - main thread, module Test

Address |Hex dump Command Comments -
EE4E1i19C| s BS DCE14160 racns | of fset Test.@A41&10C, Heasn

Gad4aiifi|) - ES B2SCH0EA call 5Test.B0409EES

Gad4alife() = Al ECEld4166 o | Test.4161EC, Hean

EEd4EllAE(| - SB0S EB&14188 | cmpl Test.4161EB, Hean

EE4EALIEL[] =~ 74 BE Je ETest. 80481189

BE4E11ES() » 5@ push L Hean hFoduy le =» [4161ECT = HMULL
FEdEl 1B () » ES S53FA16E call £ imp. &KERMEL32. Freel ibrary > | LKERHELESZ. Freel ibrary
AE4A11E9(L> C3 ret T

Demangling of symbolic names

In C++ you are allowed to declare functions with the same name but with the different number or types of
parameters. Linker must be able to distinguish them one from another. To assure this, compiler adds the
description of the formal parameters and type of return to the function's name. This process is called
name decoration, or else name mangling. For example, void Setdlgscrol(HWND hparent,int id,int pos) will
be encoded as ?Setdlgscroll@@YAXPAUHWND @@HH@Z in Visual Studio and as
@Setdlgscroli$gp6HWND__ii in Borland C++ Builder. Functions Floatingcall() and Floatingargs() in
Test.exe have mangled names @Floatingargs$qfdg and @Floatingcall$qv.

Restoring of the original names is called demangling. OllyDbg can demangle names created by GNU,
Microsoft and Borland compilers. This process is controlled by the option Code | Demangle symbolic
names. Unlike the OllyDbg v1.xx, version 2 keeps both versions and can reswitch between the two

22

presentations anytime.

Although it's possible to extract the number and types of the parameters, OllyDbg restores only the name
of the function. If demangling is on, it may happen that several memory locations will be named identically.

Conditional commands
Look at these two command sequences:

83F8 00 CMP EAX,0 09CO0 OR EAX,EAX
74 50 JE 00123456 74 51 JE 00123456

They do the same: jump is taken if EAX is zero. In the first case mnemonics JE perfectly describes the
action: jump is taken if EAX and 0 are equal. But what JE means in the second example? That EAX and
EAX are equal? Of course not. Jump is taken if result of the operation (EAX OR EAX) is zero. In this case,
mnemonics JZ would be better. The problem is that JE and JZ are synonims and translate to the same
binary code 74 (or OF84 if offset exceeds 128 bytes). How can OllyDbg guess which one is better?

The answer: analysis. When OllyDbg analyses code, it notices which command has set conditional flags
and uses this information to select mnemonics. The feature is controlled by the option Mnemonics |
Guess alternative forms of conditional commands . and influences decoding of JE/JZ, JNE/INZ,
JAE/JC and JB/INC (and correspondingly SETE/SETZ, CMOVE/CMOVZ etc.)

Assembler syntax
Assembler automatically recognizes MASM, Ideal and HLA syntax. AT&T is not supported.

Dependless on the selected disassembling mode, you may type commands in MASM, Ideal or HLA
format. HLA is recognized by the parentheses around the operands. The following commands assemble
identically:

MOV [EAX],ESI

MOV [DWORD EAX],ESI
MOV DWORD PTR [EAX],ESI
MOV (ESI,[EAX])

(Note inverse order of operands in HLA). Memory operands require square brackets: MOV EAX, Zerodiv
moves address of label _Zerodiv into register EAX, MOV EAX,[_Zerodiv] moves contents of doubleword
memory at address _Zerodiv into EAX, and MOV _Zerodiv,EAX is invalid.

You don't need to specify the size of memory operand if it can be derived from the command or from other
operands. For example, Assembler knows that register ESI has doubleword size and therefore memory
operand in MOV [EAX],ESI is also a 32-bit location. But in the case of MOV [EAX],1 all three possible
forms are equally valid:

MOV [DWORD EAX],1
MOV [WORD EAX],1
MOV [BYTE EAX],1

and Assembler will issue a warning:

23

x

00401 00D |mw [eax].1 =]

™ Keep size Fleaze specify operand size

¥ Fill rest with HOPs

You may specify known constants directly as command operands:
MOV EAX,WM_PAINT translates to MOV EAX,OF

Expressions in operands are limited to addition, subtraction and ORing of constants and labels. All three
operations have the same priority and are executed from left to right. 32-bit overflows are ignored.
Parentheses are not allowed:

MOV EAX,WS_CHILD|WS_VISIBLE translates to MOV EAX,50000000

All constants in the OllyDbg are hexadecimal by default. If you want to specify decimal constant, follow it
with the point:

MOV EAX,1000 is equivalent to MOV EAX,0x1000
MOV EAX,1000. translates to MOV EAX,3E8

Hexadecimal constant may begin with a letter (A-F), but symbolic labels have higher priority than hex
numbers. Assume that you have defined label DEF at address 0x00401017. In this case,

MOV EAX,ABC translates to MOV EAX,0ABC
MOV EAX,DEF translates to MOV EAX,401017

To avoid ambiguity, precede hexadecimal constants with 0 or Ox: MOV EAX,0DEF .

There are only few exceptions to this rule. Indices of arguments and local variables are decimal. For
example, ARG.10 is the address of the tenth call argument with offset 10,0-4=40,,=0x28. To memorize
this rule, note that ARG and index are separated with a decimal point.

Ordinals are also in decimal. COMCTL32.#332 means export with ordinal 3324,.

16-bit addresses are supported, but Assembler always assumes 32-bit code segment and adds address
size prefix 0x67. If address contains no 16-bit registers, use keyword SMALL to force 16-bit addressing
mode:

MOV ECX,[DWORD FS:0] generates 32-bit address

MOV ECX,[SMALL DWORD FS:0] generates 16-bit address (command is 1 byte shorter)

Undocumented 80x86 commands

OllyDbg recognizes several undocumented 80x86 commands:

Command Hex code Comments

INT1 (ICEBP) F1 1-byte breakpoint

24

SAL DO /6, D2 /6, | Arithmetic shift, identical with DO /4 etc.
Co/6
SALC D6 Set AL on Carry Flag
TEST F6/1 Logical Test, identical with F6 /0
REPNE LODS, F2:AD, String operations, REPNE is interpreted the
REPNE MOVS, ... F2:A5, ... same way as REP
FFREEP DF /0 Free Floating-Point Register
uD1 OF B9 Intentionally undefined instruction

Disassembler supports all mentioned commands. Assembler will not generate non-standard SAL and
TEST commands; if necessary, use binary edit to create binary codes.

25

Memory map

General information

Each 32-bit application runs in its own virtual 2°*byte memory space. Only the lower part of this space (2
or 3 gigabytes) is available to the application. Windows fills it with executable modules, data blocks, stacks
and system tables. Minimal allocation unit is a page (4096 bytes). Each page has several attributes that
indicate whether page can be read, modified or executed. Except for this protection, there are no physical
borders berween the memory blocks. If application allocates two blocks of data and they are adjacent by
accident, nothing will prevent appplication from treating them as a single data block.

OllyDbg treats application's memory as a set of independent blocks. Memory map window displays all
memory blocks available to the Debuggee. There are no standard means to determine where one block
ends and another begins, so it may happen that OllyDbg will show several portions of allocated memory
as a single memory block. But in most cases precise resolution is not necessary.

Any operation on the memory contents is limited to the block. In most cases, this works fine and facilitates
debugging. But if, for example, module contains several executable sections, you would be unable to see
the whole code at once. Therefore OllyDbg may merge adjacent code block into one, as on the following
example:

X1 Memory map v_ =10l x|
Address ISLEE IDwner ISEDt[Dn IEDntaln5 |Type|ﬁcceas IInltlal acceal;
TEIACHEA | BEER18E0H| TMM32 relos Relocat ions Ima |R EWE CopyOnhls
Yrl20EEE | BEEH18E0H| OLEAUT 32 FE header Ima |R RUWE CopwOnbls
rrlZ2lBBa Baagiean OLEAUTSZ tedt, sorps | Code, imports,edports Ima R E RWE CopyOnhlc
FrlAZBE0| BEEE3AEE | OLEAUT32 .data Data Imga |EW CopwOnllyr | RWE CopwOnblc
rrlASEEE | BEE018Ea0| OLEAUT 32 S ELT Fesources Ima |R RWE CopyOnllc
TrlAGEEE | BEE0EEEH| OLEAUT 32 reloc Felocat ions Ima |R RWE CopyOnhlc
Trd4EQBEE | BEEN1EEN| ole32 FE header Ima |R RWE CopwOnbls [™

System DLL oleaut32.dll in WindowsXP declares two adjacent sections: .text and .orpc as code. They
have identical attributes, and OllyDbg interpretes these two sections as a single memory block.

Memory map is updated on every pause. If you need to actualize the window while program is running,
choose Update from the pop-up menu or press Ctrl+R (as in Re-read).

Doubleclick on the line in Memory map opens standalone window that displays the contents of the pointed
memory block.

You may also search the whole memory of the process for the specified combination of bytes, starting
from the selected block (Search... or Ctrl+B, see detailed description below in the chapter Search). When
the combination is found, OllyDbg opens dump window and scrolls it to the first found location. Press
Ctrl+L to find next location in the dump or Esc to close dump. Press Ctrl+L in the Memory map to
continue search.

Kernel memory

Kernel (system) memory is allocated in the high memory area. Usually it starts at address 0x80000000
(home versions) or 0OxC0000000 (some server versions of Windows).

If OllyDbg can see kernel memory, it will attempt to display its contents using special debugging functions.
These functions work well under Windows XP, but usually fail under Windows 7. OllyDbg displays kernel
memory as a single block where unavailable pages are filled with zeros instead of question marks, as in
all other cases. OllyDbg can neither modify kernel memory, nor change memory attributes, nor set
breakpoints of any kind. The only available operation is search. Attention, full search may take several
minutes!

26

Kernel memory is not directly accessible to the applications, but OS or driver may grant access to the
portions of this memory. For example, some antivirus programs redirect LoadLibrary, GetProcAddress and
similar API functions to the kernel memory, where antivirus may make additional validity checks without
the risk of being corrupted by the virus. If OllyDbg encounters such function, it traces it using single-step
traps.

Backup

For each memory block, except for kernel, you can create a backup. This is a copy of the current memory
contents. If backup is available, OllyDbg highlights differences. You can view backup, restore
modifications, save backup to disk or read it back. Saved backup is helpful if you want to see the
differences between two runs.

Backup is created automatically when you edit code or data in the CPU window. Backup is necessary if
you request pause on modified command while running run trace. See detailed description below in the
section "Run trace and profiling". Option Debugging | Auto backup user code tells OllyDbg to create
backups of executable code at the moment when module is loaded into the memory.

Note that standalone dump windows may create their own backups. They are physically different from the
backups described here.

Break on memory access
In the Memory map window you can set one-shot breakpoint on access on the whole memory block. Any
possible access (read, write or execution) will trigger a break and remove breakpoint. Break on stack is
not allowed, it may lead to crash inside system calls.

This kind of memory breakpoint is useful if you need to find calls to DLL or returns from such calls. Just
place breakpoint on the code section of the corresponding module.

27

Dumps

Dump windows display contents of memory, file or disc. CPU window includes three dumps:
Disassembler, Dump and Stack. One may also open unlimited number of standalone dump windows.

There are several ways to create a dump. Doubleclick on the line in the Memory map to open a dump of
the selected memory block. Select a piece of memory in CPU Disassembler or CPU Dump and choose
Open in a separate Dump window from menu to monitor only this piece. If you choose Decode as
structure... , the selection can be decoded as one of the predefined Windows structures. If you choose
Decode as pointer to structure... , doubleword that starts at the first byte of selection will be interpreted
as a pointer to the structure, like LOGFONTW passed to CreateFontindirectW() on the following example:

[structure LOGFONTW at ollydbg.005792E4 i [m] B
Addiress |Hex dump Decoded data Comments -
HEEYSZES | - B9E0EREEEA OO0 EasEEaEs FH=ight = 9

EELFIZES || - BEB0BEaE OO0 BaEnEnas Width = &

HRSFSIZEC || - BRBRBEREA OO BAEREEAE Escaperment = 8

FRSF22FE || - BRBnBEaa D0 BAEREEEE Orientation = @

EAESF22F4 || « BCEZBEEAA OO @AREREZEC Weiaht = FW_BOLD

EEEFo2F2 (] - 88 DB Ba Itslics = FALSE

EESFOZFS (] -8B OB Ba Underline = FALSE

BESFSZFA|] - 88 DE B4& Strikelut = FALSE

BEEFTIZFE|| -FF OB FF CharSet = OEM_CHRARSET

BESFIZFC(] -85 OB @& OytFrecision = OUT_RASTEFR_FRECIS

BESyI2FO(] - 88 DB @A ClipPreci=ion = CLIP_DEFRILT_FRECIS
ERSFIZFE(] « B8R DB @A Cuality = DEFAULT_GUALITY

EERSF22FF || <@l OB @1 FitchAndFamily = FIKED_FITCHIFF_DOMTCRRE
EESFo26A || -E480 6588 | UMICODE "Terminal™ Facel22.]1 = "Terminal™

EESFo21A|] -8E8E BaEa UNICODE @,8,.8,48,8,8,8,8

aasyozza (| -868a 8aaa (UNICODE &6,8,.8,6,08,8,8,8

EEES226 L B8EA A8E8E | UNICODE @,4,8,8,8,8, 8,8/ L -
1] | AW

To open a file, select View | File... from the main menu. If file extension differs from .exe, .dll and .Ink, you
can drag and drop it into the OllyDbg. To save modified file, choose Save file... from the pop-up menu.

If you have sufficient administrative rights, you may directly inspect the contents of the local disks on your
computer (View | Drive...):

Specify physical drive extent il
Dirive IE: 'I Offzet ID Size IB'IEE bytes

Yalume name IDisk C IEI I'I G zectars
File sugtem INTFS IEI |2 clusters
k. Cancel

The size of the extent is limited mainly by the available memory. Drive dump is read-only, you can't save
any modifications back to the disk - it would be too dangerous for the file system.

Dumps support many different formats: hexadecimal with ASCII, UNICODE or MBCS text, pure ASCII or
UNICODE text, 16-and 32-bit integers in all possible presentations, stack view, 32-, 64- and 80-bit
floating-point numbers, or as a disassembled code. For ASCIl and MBCS you can choose one of the
codepages installed on your computer. Here is an example of the multibyte (variable-width) UTF-8 dump:

28

Address |Hex dump Multibyte (UTF-8) =
0041845 4F BC BC 79 44 62 &7 E4 B2 AD E6 98 87 E7 AB 99|01 1 v D h g BEHEE--rorerrmreeees
O041844E|E6 98 AF E6 9C 80 EF 9D 83 E5 A% 81 /|E7 94 84 4F| 2&Ew B0 omeeeeer

Q0412ARB|6C 6C 79 44|62 67 E4 Bg AD E6 96 £7 ES Bo &4 11w Db g HEZZE oo
00412464 |E6 96 99 E7|AB 99 ES 80|82 4F 6C BC(79 44 62 67| #uh, 01 1 v D hog rerverrmrminennens it
Q0418474 | E6 9% AF E4|B% 80 E7 AY| 8D E% 8% B7|E6 3C £9 B

Q04124249 ES 8F AF E8 AT 86 Eb BC 96 E7 95 8C E9 49D AZ IR T -TREEE

Q0418498 | E7 94 84 33|32 E4 BD 8D E6 Bl &7 EY BC 96 RIS 2 fEC g v
00415446 | E5 88 86 E6 9E 90 ES BD 88 ES AF 95 E5 99 AS | SRAHMHL B2 oreoeer oo e
0041 248% | EF BC €C E6 9% AF E4 B% €0 E4 B% A4 E6 96 BO s e B
004134C4|E7 94 S4 E5 A AS E6 30|81 ES BF BD|ES BS AA | BYahzs SBER- - weereeesermmvennssnnnnns
00412402 ES BY A% ES 2% BY EF BC eC EG BO 26 20 49 44 41| B, 43 1 DA --oo--

O04124FZ|E4 BE SE B3 BF 66 74 4942 45 E7 BB 93 EC 90 88| 55 0 [£ I CE g Frrrerrmreees
0041 24F2 | E8 BS BT E6 9D A% E7 94 ¢4 E6 20 9D E6 23 B2 A BRI
Q0415802 | EF BC 8C %269 6F 67 33| EY Ba AV EZ|BO 83 L Eln g 3agifeeeen -

"Variable-width" means that single character may be represented by one, two or more bytes and that the
length of the encoding depends on the character. OllyDbg supports at most five bytes per character,
which is sufficient for all currently existing sets. Note that character 'O' at address 00418A3B above is
encoded as a single byte 4F, whereas the selected Chinese Han character that starts at 00418A42
requires three bytes: E4, B8, AD.

First displayed dump line contains 10 UTF-8 characters: seven Latine ("OllyDbg") and three Han.
Multibyte dump has 16 positions. 6 unused positions at the end of the line are filled with the grayed
ellipsises to distinguish them from the significant spaces.

OllyDbg never splits hexadecimal presentation of recognized multibyte characters between the dump
lines. Therefore some dump lines contain less than 16 bytes.

Han, Kanji or Hangul symbols are significantly wider that ASCII and would be clipped if one attempts to
force them into the ASCII raster. To avoid clipping, activate option Dump | Use wide characters in
UNICODE & multibyte dumps . ASCII and multibyte code page can be changed any time from the Dump
pane in options or directly from the pop-up menu.

Arrow buttons on the keyboard move selection one item at a time (byte in the hex dumps, wide character
in the UNICODE, command in Disassembler). Press Shift and move selection to select multiple items.

Key combinations Ctrl+UpArrow and Ctrl+DownArrow scroll dump window bytewise dependless on the
item size. This allows you to change the alignment. Shortcuts Clrl+LeftArrow and Ctrl+RightArrow scroll
windows left and right by columns.

When option Dump | Underline fixups is active, OllyDbg underlines fixups in the hexadecimal dumps.
Fixup is a location of the adjustable address. If executable file or DLL loads on address that differs from
expected, loader will change the value of this address. Be very careful when you place code into the
memory occupied by fixup, especially in DLLs! OllyDbg adjusts the contents of fixups back to the default
base, but if, for any reasons, module loads at a different base, the code will change (or non-fixuped
absolute address will point to the old, now invalid location - | don't know which situation is worser).

29

Search

Search for binary pattern

OllyDbg gives you many different search possibilities. The simples search is the search for the binary
pattern. For example, you want to find the location in Test.exe where it creates the main window. This
window is titled "Test application for OllyDbg v2 ". As Test.exe is an ASCII application, we expect that
this name is ASCII, too. Some compilers place static strings into the code, other may use data section. We
don't know this in advance and therefore must check both possibilities, if necessary.

Switch to the CPU Disassembler and press Ctrl+B (or choose Search for | Binary string... from menu):

Enter search pattern 5[

ASCI ITest application for 0llyDbyg VZI

UTF-2 ITest- applicatiomn £ or o1 1l ¥

UNICODE |18 RRIBHBM 1 T

HE= +1F 54 65 73 74 28 61 YA YA 6C 67 63 61 74 67 6F GE
28 66 6F 72 28 4F 6C 6C 79 44 62 67 28 76 32
IM5
Search: % Entire block [T lgnore caze << Prey e |
i~ Faonward
' Bl Search Cancel |

The appearing dialog allows you to specify the search string in one of the four formats: as ASCII, multibyte
(MBCS) or UNICODE string, or directly as a sequence of the bytes in hexadecimal format. ASCIl and
MBCS use currently selected codepages. In our example, ASCII control uses default codepage (1252,
ANSI - Latin 1) and MBCS will encode what you type as UTF-8. Click in the first line (ASCII) and start
typing the search pattern. As you write the text, OllyDbg updates all other lines. Where the symbol is
invalid, like odd number of bytes in the UNICODE presentation, OllyDbg displays red question mark.

If you select part of the text in one line, OllyDbg also selects all fully or partially selected characters in the
remaining controls. For example, if you select the first visible digit 5 in the hex control, OllyDbg will select
letter T in ASCII (1 byte) and MBCS (1 to 5 bytes) and first Han letter in the UNICODE line (2 bytes). Note
that OllyDbg does not support surrogates (characters encoded by a pair of UNICODE code points): two
bytes are always one UNICODE symbol. Words in the range D800..DFFF are interpreted as a separate
characters, although they are meaningless in this role.

Hexadecimal line supports masked search. Question mark in hex edit means that the contents of the
nibble will be ignored. For example, you want to find the text Analyse - or was it Analyze? Type Analyse in
ASCII line and select letter s. Its binary code is 73. Switch to hex editor (mouse or Ctrl+UpArrow) and
replace 73 by two question marks. This pattern will match both English and American forms of the text:

30

Enter search pattern I x|

ASCI IAnaly? =

UTF-2 IAnaly?e

UNICODE [#i5 * 2

HE# +06 41 6E 61 6C 72 77 b5
M5
Search: {* Entire block [T lgnore casze < Prey | Next 35 |
" Fonward
" Backward Search | Cancel |

If you paste to the hex control, it extracts digits and letters from A to F (or a to f) and ignores all other
characters. Pasting "We apologize for the inconvenience" will result in EA EF EC EE CE.

After text is entered, select search direction: forward from the beginning of the dump (Entire block),
forward from the start of the dump selection (Forward) or backward from the dump selection (Backward).
Option "Ignore case " is very limited, it works only with standard ASCII characters and ignores localized
alphabets. It may lead to errors (false positives) in MBCS and UNICODE.

Now press search. Unfortunately, there is no such string in the code section. Select the very first byte in
the CPU Dump and press Ctrl+L . This shortcut means "continue the same search in the same direction".
(By the way, Ctrl+Shift+L means "continue search in the direction opposite to the selected"). This time
the text is here. Just to be sure, press Ctrl+L again. Status bar blinks with "ltem not found ". The found
text is unique.

Unfortunately, there is a problem. We have found the text, but we need the command that accesses this
text. Don't worry, there is a special option.

Search for references

A reference to some constant is a command that includes this constant. For example, all these commands
reference address 00402007:

MOV EAX,[00402007]
PUSH 00402007
CMP CL,[BYTE 00402007+ESI*4+EDI]

We have found the location of the text "Test application for OllyDbg v2 " in the CPU dump. Select it and
from the pop-up menu choose Find references to | Selected block . There is exactly one such command:

31

[]search - References to Test:.data:00416A27..00416A45 =10 x|

Refs Test I
Address | Command | Comments ;I

ae481F7C | PUSH OFFSET B841cRZ7 ASCII "Test application for OllwDbg w2

[

|F|:|un|:| 1 reference o

Doubleclick on this reference. We are inside the call to CreateWindowEx(). Perfect, we have found the
location where main window is created:

& cPu - main thread, module Test

Address HEH dump Command Comments -
HE4H1FET &H HE FUSH & LParam = MULL

BE481F52 . FFSS 9&&1&12 FPUSH COWORD 41A1941] hInst = HULL

BHE4E1FEF - FUSH & hMenu = HULL

BE481FE1 - SF! BB FUSH & hParent = HULL

HE4H1FES = 68 45016EEE | PUSH 145 Helght = gz

BE481F&S - &8 CIZ@les@d (PUSH 1C2 |.L|Ld h 458

BHE4E1FED - BB FUSH i CLLI USEDOEFAULT

BE481F72 L= FUSH ¥ = CW_USEDEFAULT

EHEAELF YT = 68 HEEESELZ | PUSH 12886688 Style = lE_| DUERLFIF'F'ED Ws_BORDER WS _UISIBLEIWS_CL
Ba48lFFC || - &8 27chA410@ |PUSH OFFSET @o41cR2? I.Lli.ndowHame = "Test aDDllcatLon for Ol lyDbg w2™
HE4E1FE1 - 68 11eA4168 | PUSH OFFSET B@d4i16A1l ClassHame = "OLLYZTEST®

BE481F 26 - &R BE FUSH & EH':S le = @

HE4H1FEE = ES8 1333616E | CALL {JMP.&USERZZ. Createll indowErA ERSE CreatellindowEsA &

Sometimes search for references may report commands that don't include the constant directly, loke
PUSH EDX. This is not an error. Analyser attempts to predict the value of the arguments passed to the
functions. The sequence of the commands may be rather complex. For example, search for 417534 will
reveal that in the sequence

MOV EBX, OFFSET 41751C

; Long sequence oif commands that don't change EBX
LEA EDX JEBX+18]
PUSH EDX

register EDX will contain 0041751C+00000018=00417534.

Search for referenced strings

There is a faster way to find the command that references a text, and it works equally good both with
ASCII and UNICODE strings.

Switch to the CPU Disassembler and choose Search for | All referenced strings from menu:

] search - Text strings referenced in Test . - 10| x|

Strings Test | B efs Test |
Address [Command Comments ;I
=]

BE4E102H | PUSH OFFSET B4 169F4 HSCII ™ [INT11™

BE4E10A2 | PUSH OFFSET BR4163FC ASCII ™ C[HLTI™

BE4E10BC | PUSH OFFSET BR415A832 ASCII ™ (CLI™

AE4a1005 | PUSH OFFSET BR41&A6A ASCII ™ [(STII™

AE4E10F2 | PUSH OFFSET BRA41&622C ASCII "™Hs"™

@e4E1EDE | MOY COWORD EEF-1221,0FF(ASCII "OLLYZTEST™

EE4E1F41 | MOV [OWORD EEP-1221,0FF|ASCII "MULTITHRERD™

BE4E1F7C | PUSH OFFSET B804 16R27 ASCII "Test application for OLllwDbg wz™
AE4E1F2] | FUSH OFFSET @8416A11 ASCII "OLLY2TEST™

BE4E1FED | PUSH OFFSET BR416A47 ASCII "EDIT™

BE4E2E30 | PUSH OFFSET BE41&6A4C ASCII ™STHTIC™

BE4E2E8AE | PUSH OFFSET BA41&6A52 ASCII "BUTTOM™

AE4E2ZEHES | PUSH OFFSET B@41&A5A ASCII "Cmdline: XH.Z2@8s" ;I
aE482114 | PUSH OFFSET 88416730 ASCII "ntdll.dLlL™

Found 430 ztrings and references

B

32

The list may be pretty long, therefore Search window includes its own search (pop-up menu items Search
for text , Search again and Search reverse). After command is found, doubleclick it to follow address in
the Disassembler.

Search for strings uses results of the analysis. The recognition of strings is heuristical. By default, ASCII is
limited to the Latin subset. To allow international characters, activate option Strings | Allow diacritical
symbols . Note that this option does not take into account the selected code page.

UNICODE strings are limited to the same character subset as ASCII if option Strings | Use internal
heuristics is active. Windows API contains its own heuristical analyser IsTextUnicode() that should work
for many other languages (Strings | Use IsTextUnicode()). But care, this function may return false
results, or even interprete valid code or ASCII text as UNICODE!

Strings are usually null-terminated. Some languages, like Pascal or Delphi, may use another form, where
ASCII text is preceded by the character count. Recognition of Pascal string is controlled by Strings |
Decode pascal-style string constants

Note that if you change one of the mentioned options, you must repeat the analysis (Ctrl+A in
Disassembler).

Search for a constant

Here you can find the commands that include specified constant, both explicitly and implicitly. It is similar
to the search for references but is not limited to addresses. For example, search for a constant 1 will find

PUSH 1

SHL EAX,1

MOV [BYTE EAX+1],4567
DD 00000001

and many other instances where constant 1 is used.

Search for a command or a sequence of commands

You can search for a single CPU command or for a sequence of commands. This is a nontrivial task
because 80x86 has many overlapping addressing modes and frequently many encodings for the same
command. Let's take, for example, MOV EAX,(EBX]. There are 16 (yes, sixteen!) possible binary
encodings:

8B03 - the simplest form

8B43 00 - form without SIB with 1-byte zero displacement
8B83 00000000 - form without SIB with 4-byte displacement
8B0423 - form with SIB byte without scaled index
8B0463 - same

8B04A3 - same

8BO4E3 - same

8B4423 00 - SIB byte, 1-byte displacement, no index
8B4463 00 - same

8B44A3 00 - same

8B44E3 00 - same

8B8423 00000000 - SIB byte, 4-byte displacement, no index
8B8463 00000000 - same

8B84A3 00000000 - same

8B84E3 00000000 - same

8B041D 00000000 - SIB byte, 4-byte displacement, scale 1, no base

Each command can be preceded by a prefix DS: (binary code 3E) that doubles the amount of commands.

33

But this is not a problem for OllyDbg. It will find all listed commands, whether prefixed or not. (If you want
to find only commands with segment prefix, you must specify this prefix in the search model).

Commands may include imprecise operands, like "any 32-bit register”, "any memory address" or "any
operand". For example, MOV EAX,ANY will match MOV EAX,ECX; MOV EAX,12345; MOV EAX,[FS:0]
and many other commands.

Imprecise patterns use following pseudooperands:

Keyword Matches

R8 Any 8-bit register (AL,BL, CL, DL, AH, BH, CH, DH)
R16 Any 16-bit register (AX, BX, CX, DX, SP, BP, SI, DI)
R32 Any 32-bit register (EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI)
SEG Any segment register (ES, CS, SS, DS, FS, GS)
FPUREG Any FPU register (ST0..ST7)

MMXREG Any MMX register (MMO..MM7)

SSEREG Any SSE register (XMMO..XMM7)

CRREG Any control register (CR0..CR7)

DRREG Any debug register (DR0..DR7)

CONST Any constant

ANY Any register, constant or memory operand

You can freely combine these keywords in memory addresses, like in these examples:

Memory address Matches

[CONST] Any fixed memory location, like [400000]

[R32] Memory locations with address residing in register, like [ESI]
[R32+1000] Sum of any 32-bit register and constant 1000, like [EBP+1000]
[R32+CONST] Sum of any 32-bit register and any offset, like [EAX-4] or [EBP+8]
[ANY] Any memory operand, like [ESI] or [FS:EAX*8+ESI+1234]

If you are searching for the sequence of commands, it's important to emphasize the interaction of the
commands in a sequence. Suppose that you are looking for all comparisons of two memory operands.
80x86 has no such instruction (except CMPS, but it's slow and requires lengthy preparations). Therefore
compiler will generate two commands:

MOV EAX,[DWORD 408804]
CMP EAX,[DWORD 408808]

However, it is possible that compiler will choose ECX instead of EAX, or any other register. To take into
account all such cases, OllyDbg has special depending registers:

Register Meaning

RA, RB All instances of 32-bit register RA in the command or sequence must
reference the same register; the same for RB; but RA and RB must be
different

R8A, R8B Same as above, but R8A and R8B are 8-bit registers

R16A, R16B Same as above, but R16A and R16B are 16-bit registers

R32A, R32B Same as RA, RB

Therefore search for XOR RA,RA will find all commands that use XOR to zero 32-bit register, whereas
XOR RA,RB will exclude such cases. Correct sequence for the mentioned example is

MOV RA,[CONST]
CMP RA,[CONST]

Optimizing compiler may insert other commands inbetween:

34

MOV EAX,[DWORD 408804]
MOV ESI,401007

SUB ECX,EAX

CMP EAX,[DWORD 408808]

Commands MOV ESI,401007 and SUB ECX,EAX don't change the contents of register EAX. Command
SUB ECX,8 modifies EFL, but CMP EAX,[DWORD 408808] doesn't use flags. Therefore two additional
commands have no influence on the memory comparison. If option Allow intermediate commands in the
sequence search dialog is active, they will be ignored. Of course, calls and unconditional jumps are not
allowed.

The functioning of the command sequence may be influenced by the jumps from outside. If you want to
exclude such sequences, uncheck Allow jumps from outside . Other options are the same as in other
search dialogs.

There are also several imprecise commands:

Command Matches
JCC Any conditional jump (JB, JNE, JAE...)
SETCC Any conditional set byte command (SETB, SETNE...)
CMovCC Any conditional move command (CMOVB, CMOVNE...)
FCMOVCC Any conditional floating-point move (FCMOVB, FCMOVE...)
Examples:
Pattern Found commands
MOV R32,ANY MOV EBX,EAX
MOV EAX,ECX
MOV EAX,[DWORD 4591DB]
MOV EDX,[DWORD EBP+8]
MOV EDX,[DWORD EAX*4+EDX]
MOV EAX,004011BC
ADD R8,CONST ADD AL,30
ADD CL,0EO0
ADD DL,7
XOR ANY,ANY XOR EAX,EAX
XOR AX,SI
XOR AL,01
XOR ESI,00000088
XOR [DWORD EBX+4],00000002
XOR ECX,[DWORD EBP-12C]
MOV EAX,[ESI+CONST] MOV EAX,[DWORD ESI+0A0]

MOV EAX,[DWORD ESI+18]
MOV EAX,[DWORD ESI-30]

Note that in the last line [DWORD ESI-30] is equivalent to [DWORD ESI+0FFFFFFDQ].

Each line in the search pattern may include several commands separated by a semicolon. Suppose you
want to find all single commands where register EAX is zeroed. Possible (incomplete) solution:

35

Specify assembler search model ' 5[

[MOV E43.0; XOR EAX EAX; SUB EAX EAX; LEA EAX (0] [~

Search Cloze |

(If you are curious: missing instructions are AND EAX,0, IMUL EAX,0 and MOV EAX,[zeromemory]. SHL
EAX,0x20 and friends will not work as expected because shift count in 32-bit mode is restricted to 5 bits).

Search for all items

Many of the search types described above exist in two versions: as a search for a single next item, and as
a search for all items.

OllyDbg remembers up to 8 last searches in the tabs of the Search window. These tabs are named by the
search function (Calls stays for intermodular calls, Commands for single or multiple commands, Refs for
the list of references etc.), followed by the module name:

[} search - Intermodular calls in Test 101 x|
Calls Test | Floats Test I Commands Test I Refs Test I
Hddress | Command Dest Dest nars Comrment s .:J
HE4E1EEF | CALL < JMP.&G0I32. CreateSol idBrush> | FFFIEFDE | GOIZZ. CreateSol idBrush
AA4E 1692 | CALL <JMP.&KERMEL32. CreateThread> TCE1RE2F | kerne |32, CreateThread pSecurity = MULL, StackSize = 8, Sta—I
HE4E1FSE| CALL <JMP.&USER32. CreatellindowExA> | FFOS198E | USERZZ. CreatellindowEXA | ExtStule = B, ClassMame = "OLLY2TEST
HE4E1FCY| CALL €JMP.&USER32. CreatellindowErAX | FFOS198E | USERZZ. CreatellindowEXA | ExtStule = WS_E¥_CLIEMTEDGE, ClassMz
EE4E2E42 | CALL £JMP. &USERS2. CreatellindowExA > Fr0E1968E | JSERZZ. Createll indowExA ExtStyle = @, ClassMame = "STARTIC™,
EE4E268ES | CALL <JMP.&USER22. CreatellindowExA > vr0E198E | USERZ2. CreatellindowERA ExtStule = 8, ClassMame = "BUTTONH",
EE4E2255 | CALL <JMP.&USERZZ2. CreatellindowExAx | FFOE196E | USERSEZ. CreatellindowExA | ExtStule = B, ClassMame = "MULTITHRE
EE4E1ESE | CALL < JHMP.&USERS2. Defll indowProch TrO40F&E | USERZE. Defll indowProch
EE4E2225| CALL < JHMP.&USERZ2. Def W indowProch > TrO40F&E | USERZZ. Defll indowProch
EEE2192 | CALL <JMP. 860132, De letelbiect = TrFLleA2B | G0I22.0eletelbicct
EE4E1ELF| CALL < JMP. &USER3Z. Destraoull indow TrO4EEEE | USERZZ. Destrowll indow
HE4E2212| CALL €JMP. &USER32. Destroull indow s vrO4EGGE | USERZZ. Destroull indow
AE4E2150| CALL <JMP. &USER32.DispatchMessaged> | 7POD4BLCED | IJSERZZ.DispatchMessagasA
AA4E2203 | CALL <£JdMP. &USER32.DispatchMessagel> | ¥PO4BLCED | IJSERZZ.DispatchMessagasA
EE4E1EYOD| CALL <JMP. &USERS2.Enab Lell indow vrOo4c404 | USERZEZ.Enab lell indow Enable = FHLSE
HE4E1E29| CALL <JMP.&USER3Z2.EndFPaint TrO4B4CE | USERSEZ.EndPaint _:J
|F0und 325 intermodular calls a

If there are already 8 tabs in the window, new search will close the rightmost tab. To preserve it, right click
on the tab name and choose Move tab to front . Middle mouse click on the tab name closes this tab.

Doubleclick on the line follows command in the Disassembler. Shortcuts Alt+F7 and Alt+F8 show all
found locations sequentially. By the way, these shortcuts work in the Disassembler, too.

Search for all intermodular calls

This kind of search attempts to find all locations where module calls, directly or indirectly, functions that
reside in the different module. An example is shown on the above screenshot. Column with comments
lists known parameters passed to the function.

To find function, start typing its name (without module). Search window scrolls to the first function which
name begins from the typed characters. Typed names are not case-sensitive.

There are several ways to call imported functions. Borland compilers ask system loader to store real
addresses of the imported functions in a table (usually within the section .idata, see dump below). At the
end of the code section they create a set of indirect jumps, one for each import. Call to import is in fact a
call to the indirect jump to this import:

36

Address Hex dump Camrmand Comments -
B84 1517E 5~ FF25 £a124288 | JMP COWORD <&KERMEL3Z.5etT ickCount »]

BE4 15184 i- FF25 £41z24268 [JMP COWORD <&KERMELZZ.GetUersion]

BE41518AR i- FF25 &212470R | JMP COWORD <&KERMELSZ.GetVersionExAR]

HE4 15198 i- FF25 EC12470F | JMP COWORD <&KERMELSZ.HeapAlloc)]

AE4 15196 £- FF25 FAlZ42A8 | JMP COWORD <&KERMEL3Z.HeapFrees:]

BE4 15190 5- FF25 741242088 | JMP COWORD <&KERMEL3Z.InitializeCriticalSection>] _I
HE4151R2 5- FF25 F2124268 | JMP COWORD <&KERMEL3Z. Inter lockedDecrement »]

HE4151A%5 - FFP25 Flisdzpl | JHP COWORD <#KERMELZZ. Inter lockedIncrement »] %
[EE421268]=rCEA92AC (kernel32.GetTickCount] T
Local calls from Thread+er, Thread+B8A0, Thread+BEF —
-
Address Lalue Comment s -
LKERMEL3Z. GetTickCount BDBE4Z21268 FECEE92AC | kernel3d2.GetTickCount b
LKERMEL3Z. GetlUersion BE421264 FCB114AE | kernel32.GetWVersion =
LKERMELZZ2. GetlersionEsA BE4Z21265 FC212851 | kernel32.GetWersionExA
&KERMELZ2.HeapAl loc BE421260 FCP18504 | ntdll.Rt LAl locateHeap
&KERMEL2Z2.HeapFree bH42127E ¥CF18430 | ntdll.Rt [FreeHeap
HKERMELZ2. InitializeCriticalSect ion BE421274 | FCE8AIFAL |kernel32.InitializeCriticalSection
&KERMELZZ. Inter lockedDecrement BE4Z21273 FCEE9794 | kernel32. Inter lockedDecrement =
| ®KERMELZZ. InterlockedIncrenent B8421270C rCEES7VFE | kernel32. InterlockedIncrement

If you want to intercept all static calls from the particular module to the API function, JMP to import is
usually the best place.

Note the names that OllyDbg uses to describe these items. Address of the imported function is
module.function. Memory location in the table of the imports contains reference to the function. To
distinguish address of the reference from the address of the function itself, OllyDbg prepends function
name with an ampersand: &module.function. Call to the function is in fact a call to the jump to this
function, but these jumps get no specific labels. To emphasize the fact of the indirect jump and identify the
destination, OllyDbg prepends call address with JMP and places this construct into the angle brackets:
<JMP.&module.function>. Finally, disassembled jump will look like

CALL <JMP.&KERNEL32.GetModuleHandleA>

By the way, have you noticed that address of HeapAlloc is labelled as &KERNEL32.HeapAlloc but
commented as ntdll.RtlAllocateHeap? This is an example of export forwarding. For historical reasons,
HeapAlloc() is declared in kernel32.dll, but its functionality is identical with RtlAllocateheap(). It would be
possible to write a stub that calls RtlAllocateHeap() with the same parameters, or simply jumps to this
function. But, to spare linking and execution time, KERNEL32 tells loader that it must forward this call
directly to ntdll. For a simple and understandable description of the forwarding | recommend An In-Depth
Look into the Win32 Portable Executable File Format, Part 2 by Matt Pietrek.

Microsoft compilers make intermodular calls a bit differently. The table of the imported destinations is
usually placed at the beginning of the code section. Each call to the function is just an indirect call over the
import table:

CALL [DWORD <&KERNEL32.GetModuleHandleA>]
GNU compiler uses calls of both types, even within a single executable file.
Search for calls uses predictions made by the Analyser. If OllyDbg tells you that command CALL EDI is a

call to GetModuleHandleA(), then there is a MOV EDI,[DWORD <&KERNEL32.GetModuleHandleA>] that
precedes this call.

37

Threads

General information
OllyDbg can debug multithreaded applications.

Threads usually have no names. When new thread is created, Windows assign a system-unique identifier
to it. Unfortunately, this identifier is different each time you start the application.

To address this problem, OllyDbg numerates all threads as they are created. Main thread of the
Debuggee has ordinal number 1. Subsequent thread are numbered 2, 3 and so on. If order in which
application creates its threads is fixed, ordinal numbers remain the same in different debugging sessions.
Expressions support both identifiers and ordinals.

Sometimes OS creates its own threads, for example, if you pause the application with
DebugBreakProcess(). OllyDbg labels them as temporary and assigns no (zero) ordinals:

Threads =10 x|

Window's title Last ercor |TIB |Su5p9|;|
OEHEEHEEY | Test application for | ERROR_SUCCESS | Test.<{Modu leEntrwPoint | FFFOEGDE| @,
BEEEECDS | Thread 1 count 118 ERROF_SUCCESS | FCE81A555 TFFODEaaE| a,
BREEEGAC | Thread 2 count 114 ERROF_SUCCESS | FCE1A55E TFFOCEAA| @,
BRARAS T4 ERROF_SUCCESS ntdll.DbgliRemoteBreak i YFFOEBQEE| B,

Column 'Window's title ' in the Threads window contains title of the top-level window created by the
thread. If thread creates several windows, OllyDbg will randomly select one of them.

Column 'Last error ' shows the most recent error code set by API function. This is the value returned by
GetlLastError().

You can manually suspend and resume threads. Note that manually suspended threads are not
automatically resumed if OllyDbg detaches from the Debuggee.

| have mentioned that threads are usually, but not always, nameless. There is a special service exception
0x406D1388 (MS_VC_EXCEPTION) used by Visual suite and supported by OllyDbg that passes thread
names to the debugger. You can also name your threads (pop-up menu of Threads window, Set
symbolic name). Thread names are not kept between the sessions.

Stepping in multithreaded applications

There is a caveat you must be aware when debugging multithreaded applications. All kinds of stepping,
like step over, run trace, hit trace, or execute till return are executed within the current thread. Imagine the
following scenario: function xxx posts signal to the different thread and waits for answer. You step over the
call to xxx. OllyDbg suspends all threads except for the current, sets temporary breakpoint on the
command following call and continues execution. xxx posts signal, waits for answer, and... nothing
happens, because thread that processes this signal is paused. If this happens, pause program and run it
in the all-threads mode, or manually reswitch to the different thread.

38

Exception handlers

There are two exception handling mechanisms integrated into the Windows: structured exception handling
(SEH) and vectored exception handling (VEH). In both cases, exceptions handlers are organized into the
linked chains.

SEH handling is thread-dependent. Each thread must install its own handlers separately. Links of the SEH
chain are called frames and are kept on the stack. The most recently installed frame is pointed to by the
[DWORD FS:0]. (In the flat Win32 memory model selectors CS, DS, ES and DS cover the whole logical
memory and have base 0. FS is an exception, its base equals to the address of the thread's data block,
also known as a thread's information block, or TIB).

SEH frames roughly correspond to the __try ... __except blocks in C++. When compiler encounters __try,
it inserts

PUSH <address of handler> ; Function that processe S exception

PUSH [DWORD FS:0] ; Address of previous SE H frame

MOV [DWORD FS:0],ESP ; Update SEH frame point erin TIB

or equivalent command sequence. After several handlers are installed, stack has following structure:

—IFS:0]
pointer to previous frame <+« o

address of handler —

|

pointer to previous frame <+« o

address of handler —

|

FFFFFFFF (last frame) <! x

address of handler

To remove last installed handler, thread may execute

POP EDX ; Address of previous SE H frame
POP ECX ; Address of handler (di scarded)
MOV [DWORD FS:0],EDX ; Update SEH frame point erin TIB

Of course, registers may be different. Instead of POP ECX, compiler may emit ADD ESP,4; instead of
[DWORD FS:0] - [DWORD FS:EAX] and precede sequence with XOR EAX,EAX etc.

When exception occurs, Windows walk the chain and asks each handler whether it can handle this event.
If handler returns EXCEPTION_CONTINUE_SEARCH, Windows try next handler and so on, until handler
is found or end of chain is reached, in which case Windows call unhandled exception filter. (Default UEF
usually terminates the application).

Vectored exception handling is not available under Windows ME or Windows 2000. Vectored handlers
have precedence over SEH and are thread-independent. Process may add handler either to the head or
to the tail of the queue. How this queue is managed is not documented. In fact, Windows attempt to hide
the addresses of the handlers by scrambling them using process-unique keys and exact location of the
queue is not available. Therefore OllyDbg is able to list VEH handlers only if proces s was started by
the OllyDbg itself , and only if option Debugging | Set permanent breakpoint on system calls was
active all the time. Also, it may happen that with the new service pack OllyDbg will lose the ability to trace
VEH chain.

Now let's make a quick experiment. Open Test.exe in OllyDbg, run it and press button "Set VEH" several
times. Pause application and select View | VEH/SEH chain from the main menu (or press Alt+S):

39

5% YEH/SEH chain of main thread o =] |
Indeangpe |L'Lnk |Handler ﬂ

1 Vectored BE149B308 | BO481 222
z2 Vectored BE143E55 | BE4E1353
3 Uectored BE147ASS | BE4E] 222
4 SEH BE1ZFE1R | YCEIIIF2
= SEH BE12FFER | BE4EEBEBFC
& SEH BE12FFER | YCE229F2

The handlers are listed in the order in which they will be called when exception occurs (handler with index
1 first).

If you start Test.exe in a standalone mode and attach OllyDbg afterwards, vectored handler addresses will
be marked as Invalid.

40

Expressions and watches

General information

OllyDbg uses expressions in Watches, conditional breakpoints and run trace conditions. Evaluation of
expressions is done in two steps. First, OllyDbg compiles expression into the intermediate binary form. On
the second step, it calculates its value. The evaluation is usually orders of magnitude faster than
compilation, which is vital for breakpoints and trace.

Expressions may be roughly divided in two classes: those used to make a decision (for example,
conditional breakpoints) and those used to display data. In the first case you need only one value. In the
second case, you may want to see multiple values and expressions at once.

Internally, floating-point numbers have 80-bit precision. All other elements are kept as a 32-bit integer
numbers.

Basic elements
Expressions may include:

- Byte registers AL, BL, CL, DL, AH, BH, CH, DH

* Word registers AX, BX, CX, DX, SP, BP, SI, DI

« Doubleword registers EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI

e Segmentregisters CS, DS, ES, SS, FS, GS

e FPU registers STO, ST1, ST2, ST3, ST4, ST5, ST6, ST7 or alternative forms ST, ST(0), ST(1), ST(2),
ST(3), ST(4), ST(5), ST(6), ST(7)

e Index pointer EIP

e CPU flags EFL or alternative form FLAGS

e FPU registers FST and FCW

e SSE register MXCSR

e Simple labels, like GetWindowTextA or userdefinedlabel

« Known constants, like WM_PAINT or ERROR_FILE_NOT_FOUND

e Labels with prepended module name, like user32.GetWindowTextA

* Immediate integer numbers, like ABCDEFO01, 123, 0x123 (all hexadecimal) or 123. (decimal)

« Immediate floating point numbers, like 123.456e-33

e String constants, like "String" (used in comparisons)

e Parameters %A and %B

e Thread identifier %THR (or alternative form %THREAD)

e Ordinal number of the current thread %ORD (or alternative form %ORDINAL)

e Contents of memory (requires square brackets [], see detailed description below)

Elements are processed in the listed order. Therefore AH is always interpreted as a 8-bit register and not
as a hexadecimal constant OAh. For the same reason, label EBP can't be used in expressions (but
mymodule.EBP would be OK). If there is a label named ABCD, ABCD will be interpreted as address of
this label and not as the hexadecimal number 0XO000ABCD.

41

Contents of memory

To access memory, take address into the square brackets and optionally specify type and size of the item.
OllyDbg supports following modifiers:

Modifier How the contents of memory is interpreted

BYTE Unsigned 8-hit integer

CHAR Signed 8-bit integer

WORD Unsigned 16-bit integer

SHORT Signed 16-bit integer

DWORD Unsigned 32-bit integer (default)

INT, LONG Signed 32-bit integer

FLOAT 32-bit floating-point number

DOUBLE 64-bit floating-point number

LONG DOUBLE 80-bit floating-point number

ASCII Address inside the brackets will be interpreted as a pointer to ASCII
string, but numerical value of the expression remains unchanged

UNICODE Address inside the brackets will be interpreted as a pointer to
UNICODE string, but numerical value of the expression remains
unchanged

Syntax rules are relatively loose. The following five expressions have the same meaning:

[400000+EAX*32] ; Note that DWORD is assumed by default
DWORD [400000+EAX*32]

[DWORD 32*EAX+400000]

DS:[DWORD 32*EAX+400000]

[DWORD DS:32*EAX+400000]

Contents of memory may be used to address another memory. Assume that ppi is declared as int **ppi

(name is exported as _ppi) and we want to monitor the pointed integer number **ppi. The correct
expression is

[INT [[_ppil]]

Note that we need three pairs of brackets. In details:

_ppi is the address of the variable (&ppi)

[_ppi] is the value of the variable ppi, which is the pointer to the pointer to integer
[Lppill is the value of *ppi, which is the pointer to integer

[[L_ppill is the pointed integer number **ppi

[INT [[_ppi]]] asks OllyDbg to interprete **ppi as an integer

One more example. We have array RECT rect[4][4] and want to inspect rect[2][3].right. Structure RECT is
declared as

typedef struct tagRECT {
LONG left;
LONG top;
LONG right;
LONG bottom;
} RECT,;

Let's begin. The size of the structure RECT is sizeof(RECT) = 4*sizeof(LONG) = 16 bytes. _rect is the
address of the first block of four RECT structures in the memory. To get pointer to rect[2], we must

42

advance this address by 2*4*sizeof(RECT) bytes: _rect+2*4*16. To get pointer to rect[2][3], we must move
our pointer by 3 strucures: _rect+2*4*16+3*16. Now we need right, which is the third doubleword in the
structure RECT: _rect+2*4*16+3*16+2*4. We have calculated the address of rect[2][3].right. To get the
contents of pointed memory, we must take this address into brackets. Final expression will be

[LONG _rect+2*4*16+3*16+2*4] - wrong!
Wait! Do you see the error? By default, OllyDbg interpretes all integers as hexadecimal numbers,
therefore the effective size of the structure RECT in this expression is 16,5 = 22,9 bytes, which is not
correct. What to do? If number is decimal, append decimal point. The correct expression is

[LONG _rect+2*4*16.+3*16.+2*4]

Constants 2, 3 and 4 are the same in both bases, therefore decimal point is not necessary.

Test.exe declares both _ppi and _rect as described above. To change these variables, press button "Set
vars":

Test application for OllyDbg v2

Proceszes and threads:

Start thread | Suzpend last | Hide |ast I FatalE «itf] |
MHew process | MHew suzpended | Load ws2_32 I Unload w2 32 |
CurentDiic | Sleep(5000) |
Exceptions:
Setfiter | SetvEH | Read [00000000] | oo |
NER. T | REPFSINTT | uMPi1za4sE |
Stack owerflow | 1.0:00 | Set Trap | Hard BF in thread |
Drebugging:
POPSS/PUSHF | MOV SS/PUSHF | REPE PUSHF | Nt |
Stings | StingW | Read[Break] | Cal _Break |
Zwtlocl0] | T Savas)
[**ppi = 7. rect[2][3].right = 7 Close |
R
Expression | Uslue ﬂ
[LIMT [C_ppilll i
[LOMG _rect+2#d#l5, +3#16, +2#4] ri

[

Note that watches are updated only on some event, for example execution pause or redraw. If you need
to constantly monitor the variables, activate Appearance | Autoupdate in the pop-up menu. If autoupdate
is active, OllyDbg will periodically update the contents of the affected window. Default interval is 1 second,
it can be changed in Options (Appearance | Autoupdate interval).

You may display up to 16 consecutive memory locations by specifying the repeat count. It is allowed only
in the outermost memory bracket and has form [modifier*repcount address]. Modifier is obligatory,
standalone repeat counts like [*10 ESI] are treated as syntax errors:

43

5] Dump - Test:.data:00416 =101 %]
Address |Hew dump |ascit | ~

B804 15758
BE416768

Ba 45 72 63 65 YB V4 69 6F £E B8 56 65 &3 V4 6F
e 65 64 28 45 Y3 63 65 ¥@ 74 62 6F 6E B8 &E 74
BE41677A| 64 6C 6C 2E| 64 6C 6C 88| 4E ¥4 53 65 ¥4 49 6E 66| dll.dll HtSetlnf
AE41eFEA[E6F F2 6D 6174 69 EF GE|S4 68 v2 65/ 61 64 BB 4E|ormationThread N

Buaiches _loix

Expression | Lalue ;I
[E'TE#1&, 41&7¥5@] (@, 4%, 78, &3, &%, 7@, 74, &9, &F, &E, @, 5&, &5, &3, 74, &F
[WORD#E 41676E] e5rz2, 2864, va45, 6563, v4vE, &F69, 6E

=

Except ion Vecto
red Exception nt

 T4EE
[FLOAT#2 4167381 2. 7IFSFTE9651993988ARe+26, 1.852360ASE52 13 255090+23

Signed and unsigned data

By default, all integer variables and constants are unsigned. Floating-point items are always signed. To
interprete item as signed, prepend it with unary sign ('+' or '-') or with modifier SIGNED. To convert signed
item to unsigned, use UNSIGNED. Examples:

Unsigned Signed

OXFFFFFFFF +OxFFFFFFFF (-1.)

EAX +EAX

ECX SIGNED ECX

[DWORD 4F5024] [SIGNED DWORD 4F5024]
Operations

Arithmetic, logical and comparison operations supported by OllyDbg form a subset of the C language
operations and have similar precedence:

Operation Meaning

+-1~ Unary plus, arithmetic negation, logical negation,
bitwise negation (highest priority)

* [% Multiplication, division, remainder

+ - Addition, subtraction

<< >> Shift left, shift right

<<=>>= Less than, les than or equal, greater than, greater

than or equal

=== Equal, not equal

& Bitwise AND
n Biwise XOR
[Bitwise OR

&& Logical AND

[l Logical OR (lowest priority)

The complexity of expressions and nesting of parentheses and memory brackets are limited only by the
maximal allowed length of the expression (255 characters).

If two operands of the binary operation have different types, OllyDbg converts them to the higher type

from the following set: (float, unsigned, signed). The only exception are the shifts (<< and >>): if left
operand (binary number) is signed and right operand (shift count) is unsigned, OllyDbg makes signed shift

44

and result remains signed. Have a look:

_lox

Expression | Lalue ﬂ
(=112 FFFFFFFF (-1.1
(unsigned —113%2 3FFFFFFF [1A73741823.1

L«

In the expression (-1)>>2, -1 is a signed number (see rules above) with the binary value OXFFFFFFFF.
Therefore OllyDbg makes signed shifts, and in each shift cycle the most significant bit remains unchanged
(in our case 1). In the second expression left operand is unsigned, therefore most significant bit is set to 0.

Multiple expressions

If expression is used only to display data, it may contain several subexpressions in the form
textl=exprl,text2=expr2... Number of subexpressions is limited to 16. Explanations (textl, text2) are
ignored during the evaluation and just label the results. If explanation is absent, OllyDbg creates one
automatically. Example:

=

Expression |Ualue :I
ERX, 2#2, r23right=[LOMG _rect+2#d4#lc.+3#1c,+244] [EAX = By “2#2 = 43 v223cight = 7

&

String operations

Expressions may contain strings and string constants. Strings have form [ASCIl address] or [UNICODE
address], where address is an expression that specifies address of the first character.

Operations with strings are very limited. You may add or subtract integer to the string (C rules apply):
[UNICODE EAX]+2 is equivalent to [UNICODE EAX+4], because one UNICODE character is 2 bytes long.
You may compare string with a string constant, ignoring case: [ASCII ESI]=="ABC". Comparison is limited
to the length of the string constant, so this expression is true if ESI points to "ABCDE", "aBc" or "abc---"
and false if ESI points to "AB" or "AABC". You may also compare a pointer (doubleword) with the string
constant: ESI=="ABC". Such comparison is very similar to the previous, with the difference that you don't
need to specify string type - OllyDbg first assumes that ESI is a pointer to ASCII string, and if comparison
fails, tries UNICODE. Expression ESI=="ABC" is true if ESI points to ASCII "Abcde" or UNICODE "abc".

[X] Dump - Test:.data:00416 =10 x|

Addrezs |Hew dump |AscII |«

BE4162A0 44 65 62 FE|EF 2B 72 V4|72 69 6E &7 28 22 41 52| Debug string (RS
GE41c2ED(42 49 49 2988 44 00 &5 88 62 08 Y5 88 &7 88 20/ CII) D e b u g

BE416EC0[(EA 73 BB 74|88 2 B0 &% 88 6E BB &7 B8 28 BA 25| = t © in g [
BE416E00(88 55 B8 4E| 88 49 66 43|88 4F 60 44 88 45 66 23 UN I C O D E)

HE41E2ED| B8 BE BE

_lox

Expression Uslue ﬂ

ER¥ 4163A0 ASCII "Debug string [(HSCIII™

[ASCII ERAx] Oebug string [(ASCII)

[ASCII EAXI+E string (RASCII)

[ASCII 4165F3]1==""=tart"™ 1

[ASCII 416EF3]1==""Stop™ 5]

ERX==""S5tart"™ 5]

[UHMICODE 41&8C21 Debua string (UNICODE)

[UHICODE 41&68C21+2 bug string [UMICODE)

[UMICODE 41&658C2+4] bug string [(UMICODE]

ERX+15 4182C2 UMICOODE *Debug string (UMICODED™

ER¥+15==""0=bug" 1 J
s

45

Analysis

OllyDhbg is an analysing debugger. For each module (executable file or DLL) it attempts to separate code
from data, recognize procedures, locate embedded strings and switch tables, determine loops and
switches, find function calls and decode their arguments, and even predict value of registers during the
execution.

This task is not simple. Some of the existing compilers are highly optimizing and use different tricks to
accelerate the code. It's impossible to take them all into account. Therefore the analyser is not limited to
some particular compiler and tries to use generic rules that work equally good with any code.

How is it possible at all? OllyDbg makes 12 passes through the program, each time gathering information
that will be used on the next steps. For example, on the first pass it disassembles every possible address
within the code sections and checks whether this can be the first byte of the command. Valid command
can not start on fixup, it can’t be jump to the non-existing memory etc. Additionally it counts all found calls
to every destination. Of course, some of these calls are artefacts, but it's unlikely that two wrong calls will
point to the same command, and almost impossible that there are three of them. So if there are three or
more calls to the same address, the analyser is sure that this address is entry point of some frequently
used subroutine. On the second pass OllyDbg uses found entries as starting points for the code walk and
determines other entries, and so on. In this way | locate commands that are 99.9% sure. Some bytes,
however, are not in this chain. | probe them with 20 highly efficient heuristical methods. They are not as
reliable, and analyser can make errors, but the number of errors decreases with each release.

Procedures

Procedure is defined as a contiguous piece of code where, starting from the entry point, one can reach, at
least theoretically, all other commands (except for NOPs or similar spaceholders that fill alignment gaps).
Strict procedure has exactly one entry point and at least one return. If you select fuzzy mode, any more or
less consistent piece of code will be considered separate procedure.

Modern compilers perform global code optimizations that may split procedure in several parts. In such
case fuzzy mode is especially useful. The probability of misinterpretation, however, is rather high.

Procedures are marked by the long fat bracket in the dump column. Dollar sign ($) to the right marks call
destinations, sign "greater than" (>) - jump destinations, point (¢) — other analysed commands. Four
procedures on the picture below implement the functionality of the buttons "Read [000000] ", "INT3", "REP
FS:INT1" and "0 : 0"in the test application Test.exe:

[3 cPU - main thread, module Test

Address Hex dump Command Comments -
HE4E237FE EL] HaF

HE4E237FF Q8 MHaFP

_Hocesswiolfs 23CE #OR ERX, ERX

HE4E2332 [- SBEA Mol ERX, COWORD EAX]

HE4E2384 - 3 RETH

_Ints 5] [$ CC INT3

HE4E2 325 = cE FETH

_Repfsintl [5 F3:64:F1 FEF IMT1 Undocumented instruction or encoding
BHE4E2235A = 3 RETH

_cerodiv B s BE B10EE8A0E MOL ER#, 1

HE4E2394 - BA 880E@8anE MOL ED, 8

HE4E2395 - B9 BA0EEanE MO ECH, 8

HE4E2397 - FrF1 OIU ECH

HE4E239C - 3 RETH b

46

Stack variables

Usually call to the function with several stack arguments looks like this (assuming all doubleword
arguments):

PUSH argument3
PUSH argument2
PUSH argumentl
CALL F

Called function creates new stack frame (not always!) and allocates N doublewords of local memory on
the stack:

F: PUSH EBP
MOV EBP,ESP
SUB ESP,N*4

After these two sequences are executed, stack will have the following layout:

(unused memory)

ESP-> local N LOCAL.N]
local 2 LOCAL.2]
local 1 LOCAL.1]

EBP-> Old EBP [LOCAL.0]
Return address [RETADDR]
argumentl [ARG.1]
argument2 [ARG.2]
argument3 [ARG.3]

ARG.1 marks the address of the first function argument on the stack, [ARG.1] - its contents, ARG.2 -
address of the second argument and so on. LOCAL.O is the address of the doubleword immediately
preceding return address. If called function creates standard stack frame, then [LOCAL.O] contains
preserved old ESP value and local data begins with LOCAL.1, otherwise local data begins with LOCAL.O.
Note that ARGs and LOCALSs have decimal indices - an exception justified by the point in the notation.

Some subroutines tamper with the return address on the stack. If OllyDbg detects access to this location,
it marks it as [RETADDR].

When subroutine uses standard stack frame, register EBP serves as a frame pointer. LOCAL.1 is then
simply a EBP-4, LOCAL.2 is EBP-8, ARG.1 is EBP+8 etc. Modern optimizing compilers prefer to use EBP
as a general-purpose register and address arguments and locals over ESP. Of course, they must keep
trace of all ESP modifications. Have a look at the following code:

F: MOV EAX,[ESP+8] ; ESP=RETADDR
PUSH ESI ; ESP=RETADDR
MOV ESI,[ESP+8] ; ESP=RETADDR-4

When procedure is called (address F:), ESP points to the return address on the stack. Two doublewords
below is the second argument, ARG.2. Command PUSH decrements ESP by 4. Therefore the last line
accesses now ARG.1. The code is equivalent to:

F: MOV EAX,[ARG.2]
PUSH ESI
MOV ESI,[ARG.1]

Of course, analyser makes this for you. Keeping trace of ESP, however, takes plenty of memory. If

memory is low, you may turn off the ESP trace for system DLLs. As a negative effect, stack walk will get
unreliable.

47

Some compilers do not push each argument separately. Instead, they allocate memory on the stack (SUB
ESP,nnn) and then write arguments using ESP as index. First doubleword argument is [ESP], second -
[ESP+4] and so on.

This sample program was translated with MinGW (gcc).

int main() {
MessageBox(NULL,"I'm a little, little code in a b ig, big world...",
"Hello, world",MB_OK);

return O;

}
CPU - main thread, module zzz
Address | Hed dump Command Comment s -
HE4E12EA |y BE FUSH EEF
AE4E12EL ||« BS 10080880 | MOU ERX, 18
bE4Ea12ES g9ES HMow EEF, ESP
HE4E12ES = B3EC 18 SUB ESP, 13 _I
HE4E12ER = 83E4 FAa HHO ESF, FFFFFFFAE AMMWORD (16.-bytel stack alignment
HEd4E1 2EE = EE 90048608 |CALL &8401730 Al lozates 16. bwtes on stack
HE4E12F3 - Ef 820186808 | CALL 88401480 Czzz.88481 406
HE4E12F3 Cra424 @HEas MO COWORD ESPI, @ hdwner =» MULL
HE4E12FF 21c9 WOR ECH, ECH
AA4E1381 EA @8384888 | MOU EDX, OFFSET 80483800 ASCII "Hello, world™
biE4E1 388 g294C24 @c Mall COWORD ESP+EC], ECH Tups =» MB_OKIME_DEFEUTTOMI | ME_AFPFLMODAL
BHE4E138A - BE 1@384@08 | MOW ERH, OFFSET B04E3018 ASCII "I'm a little, little code in a big.
HiE4E1 38F = 5995424 B85 Mol COWORD ESP+21,EDHN Caption = "Hello, world™
HE4E1315 = 894424 B4 Mol COWORD ESF+41,EAX Teut = "I'm a little, little code in a big
HE4E1317 - Ef &4p58A0E | CALL <JMP.&USER3Z.MessageBonA: |[LUSER3Z2. Meszag:=BonA
HE4E1310C S3EC 18 SUB ESP, 18
HE4E131F ca LERLIE
Aa4E1326 || - 31ice #OR ERH, EAX
HE4E1 322 |L- C3 FETH 25

Note the following: The order of arguments for MessageBox() is (hOwner, Text, Caption, Type). MinGW
has changed this order. Still, OllyDbg was able to recognize the arguments.

Switches and cascaded IFs

To implement a switch, many compilers load switch variable into some register and then subtract parts of
it, like in the following sequence:

MOV EDX,<switch variable>
SUB EDX,100
JB DEFAULTCASE
JE CASE100 ; Case 100
DEC EDX
JNE DEFAULTCASE

; Case 101

This sequence may also include one- and two-stage switch tables, direct comparisons, optimizations and
other stuff. If you are deep enough in the tree of comparisons and jumps, it's very hard to say which case
is it. OllyDbg does it for you. It marks all cases, including default, and even attempts to suggest the
meaning of cases, like 'A’, WM_PAINT or EXCEPTION_ACCESS_VIOLATION. If sequence of commands
doesn't modify register (i.e. consists only of comparisons), then this is probably not a switch, but a
cascaded if operator:

if (;==100) {...}
else if (i==101) {...}
else if (i==102) {...}

Loops

Loop is a closed continuous sequence of commands where last command is a jump to the first. Loop must
have single entry point and unlimited number of exits. Loops correspond to the high-level operators do,

48

while and for. OllyDbg recognizes nested loops of any complexity. Loops are marked by parenthesis in the
disassembly. If entry is not the first command in the loop, OllyDbg marks it with a small triangle.

Below is the main loop of the threads created by the test application. Selected command is loop exit. Long
red arrow shows its destination:

CPU - main thread, module Test

Address Hexn dump Command Comments -
BE4EZ2ZES = 5955 F4 MOW COWORD EBF-BCT, EOM

BE4E22EC ¥ GH @l FFUSH 1 Remowe = PHM_REMOUE
BE4EZZEE = EH @8 FUSH @ M=aMan = WH_HULL
BE4E22F8 = EH @8 FUSH & M=aMin = WHM_MULL __J
BE4E22F2 = &H @8 FUSH & hllnd = MULL

BE4E22F 4 - 5030 D4FEFFFI] LEA ECH,[EEF-12C]

BE4E22FA = E1 FUSH ECH pM=a => OFFSET LOCAL.FS
BE4E22FE - ES EZ238aloo CALL <JHMP.%USER3Z. PeekMessage| LUSERZE. Feckesza3:A
BE4E2 388 - EBECA TEST ER.ERx

BE4E2 382 e T4 21 JZ SHORT ABdBaz3zs

BE4E2 364 « 5035 D4FEFFFI] LEA ERX, [CEEF-12C1]

BE4E238R - &A@ FUSH ERX pllza => OFFSET LOCAL.FS
HE4E2 368 - Ef &630E100 CHLL <dJHMP.&USER3Z.Trans lateMe LISERZZ2. Trans latelMeszags
BE4E2318 - 5095 D4FEFFFI] LEA EDX, CEEF-12C]

BE4E2316 - 52 FUSH EDX [pﬂsg =» OFFSET LOCAL.VS
BE4E2317 - ES EEZF@lpg CHALL <JHP.#%USER3Z2.D0ispatchMes|LUSERZZ. Dispatchiessag:A
BE4E2310 - 53BD D3FEFFFI] CHF CODWORD EBF-1281,12

BE4AZIZT (R . JE SHORT ABdEz3vd

BEGEZ 325 » | EB ACZEA1EA CALL <JMP.%KERHELZZ.GetTickCol CKERHELSZ. GetTickCount
BE4E232A - | 8B40 F2 Mo ECX, COWORO EBF-21

BE4E2320 - | 83C1 &4 AOD ECH, &4

BE4E2328 = | 3BC1 CHF ERX,ECH

BE4E2332 | VB S4 JEBE SHORT B8482363

BE4E2 334 = | FF45 F4 IMC COWORD EEF-EC]

BE4E2 337 - | ES8 SAZEA1BA CALL <JHMP.%KERMEL3Z,GetTickCol CKERHELSZ. GetTickCount
BE4E2 330 = | 8945 F3 Mol COWORD EBF-51, ER:

BE4EZI3F « | FFFE F4 FUSH COWORD EEF-BC] “#yr =» L[LOCAL.2]
BE4E2342 = | FF¥E FC FUSH COWORD EEFP-41] “#i» =» [LOCAL.11]
BE4E2345 - | 68 22ep4100 FUSH OFFSET B@41&RA22 Format = "Thread ®i count ®
BE4E2 34 - | 8085 FBFEFFFI] LEA EAX,CEEF-1183]

BE4E2358 - | 5@ FUSH ERX Aral =»> OFFSET LOCAL.&S
BE4Ez2351 - | EE 9GAIEE00E CHALL __ org_sprintf Test. org_sprintf
BE4E2 356 - | 83C4 18 AOD ESF, 1@

BE4E2359 « | 8095 FBFEFFFI] LER EDX,CEEF-11@8]

BE4E2IEF - | B2 FUSH EDX Text => OFFSET LOCAL.E&S
BE4E2358 -« | FFFE F@ FUSH COWORD EEBP-1@1] [hwnd =» [LOCAL.41]
BE4E23E52 = | ES 83288104 CALL <JMP.%USER32. SetMindowTe|LUSERZZ. SetllindowTextH
BE4E2358 » | 6A @i FUSH 1 Time = 1 ms

BE4E23ER - | ES @FZFalon CALL «JMP.%KERMHEL3Z.Sleep> KERMELZZ.Sleep

BE4E2IEF =~ E9 F8FFFFFF |&JHFP B@48Z22EC

BE4E2374 3 +BB4E FC MO ERX, COWORD EBFP-41 bt

Note that sprintf() called at address 00401ACL1 is a library function used by compiler and is not known as
such. But there are other calls somewhere in the code, so analyser was able to decide that its second
parameter is a format string, and has decoded the remaining parameters correspondingly. Here is the C
code of the loop

while (1) {
if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
if (msg.message==WM_QUIT) break;

if (GetTickCount()>t+100) {

u++; t=GetTickCount();

sprintf(s,"Thread %i count %u",threadindex,u) ;
SetWindowText(hw,s);

}

Sleep(1);

return threadindex;

Loops can be nested. Procedure Nestedloops in Test.exe is an artificial example with 5 nested loops.

49

[8 cPU - main thread, module Test

Address Her dump Command Comments -
Mestedloodps 55 FUSH EBF

HiE4@Ez 481 = EBEC Moy EEF,ESF

HE4@A24832 - 53C4 EB AOD ESP,-12 _I
HE4@az2 486 = 23CA ®OR ERX, EAX

HE4az2483 = 8945 ES MoU COWORD LOCAL.&1,ERH

HE4az48E = 3302 #OR EDX,EDH

bE4az480 = 095L FC Moy COWORD LOCAL.131,EDH

bE4az41@ ¥ 33c9 MH0R ECH, ECH

HE4@az412 = 5940 F2 Mol COWORD LOCAL.Z21,ECH

HE4@az415 » Z3CA M=0F ERX, ERA

HE4@a2417 = 2945 F4 Mol COWORD LOCAL.323, ERX

HE4@az241A > 2302 FA0R EDK, EDF

HE4az2410c = 59EE F@ MO COWORDO LOCAL.41,EDH

bE4az41F > 33C9 #OR ECH,ECH

bE4@az4:21 = 8940 EC MO COWORD LOCAL. 5]1,ECH

HE4Ez 424 * FF45 ES INC COWORD LOCAL.&]

HE4@az427 = 5345 EC BS AOD COWORD LOCAL.S1,5

[S[EETS ER] = 8370 EC =22 CHP COWORD LOCAL.51,32

HE4@a242F =~ ¥C F3 JL SHORT B84b2424

HE4@az2431 = 82345 FE b4 AOD COWORD LOCAL.41,4

HE4a2435 - 5370 Fa z8 CHP COWORD LDEHL.4].28

HE4@a2439 =~ yvC Ed4 JL SHORT 8@4B8241F

bE4@az4 36 = 8345 F4 b3 AOO COWORD LOCAL.Z21,3

HE4@az43F - 5370 F4 1E CHP COWORD LOCAL.31, 1E

HE4@az443 = 7vC OS5 L L SHORT @@d4Ez241A

HE4@Az 445 = 8345 F2 B2 AOO COWORD LOCAL.Z23,Z2

HE4@Az2449 = 8370 F2 14 CHMP COWORD LOCAL.23,14

HE4@az440 =~ ¥C C& L.L SHORT BE4E2415

HE4@az44F = FF4E FC INC COWORD LOCAL.11

HE4@a2452 = 5370 FC BA CHP COWORD LOCAL.131,8R

DE4@a24565 = 7YC BE L. L SHORT @o4Ez41is

HE4@az453 - LB45 ES MOW ER, COWORD LOCAL.&]

HE4az 456 = GBES Mol ESF,EEP

HE4@az450 = 50 FOF EEF

HE4Aaz245E |L- C3 RETH i
Imm=5 T4
Stack [ADIZFFOCI=89&9B0GE (curcent registers) —
Loop BE402424: loop wariables CLOCAL.SJ(+51, [LOCAHL.S10+1]

Loop BE40241F: loop wariable CLOCAL.410+4)

Loop BE40241A: loop wariable CLOCAL.210+3) i

int _export Nestedloops(void) {
inti,j,k,l,m,n;
n=0;
for (i=0; i<10; i++) {
for (j=0; j<20; j+=2) {
for (k=0; k<30; k+=3) {
for (I=0; 1<40; 1+=4) {
for (m=0; m<50; m+=5) {
n++;

return n;

8

Loop-related comments in the information pane can be interpreted as following: loop that starts at address
00402424 has two variables that increment by a constant on each pass: variable [LOCAL.5] (fifths
doubleword of locally allocated data on the stack) increments by 5, variable [LOCAL.6] - by 1. They
correspond to variables m and n in the source code. Variable [LOCAL.4] (I) in the loop 0040241F
increments by +4, and so on.

If loop entry point is not the first command in the bracket, it is marked with the small triangle:

50

[8 cPU - main thread, module Test

Address Her dump Command Comments -
bE4A5HES [y 53 FUSH EB=x Test . BA4EEA5E quessed woidl
HE4ASHED = BB 24eC4168 | MOV EBX,0FFSET DE41:6C24
HE4ASHSE --~EB 18 JMP SHORT BE485A7E -_J
HE4A5HEA > | EBE3 Mol ERX, COWORD EBX]
HE4A5A52 - | EBlA Mol EDX, COWORO ERX]
HE4A5A54 - | 8913 Moy COWORD EBX1,EDH
BE4ASHES = | ER BoEEE0EE HMOL EQHE, 2
HE4ASHER = | EB BOZRE0EE CHLL 88403470
BE4A5HFA > *533B B8 CHP COWORD EB®I,H
HE4ASH 2 = 75 EE JHE SHORT Bed4EsAcE
HE4A5H 7S - EB FOF EBX
HE4ASHAS k- L2 RETH ol
Irm=0 T4
[FFFOFEA0]1=A0B1A0EE (decimal 65536.) (current registers] —
Jump from 4A5HSE

w

Prediction of registers

Look at this code snippet:

CPU - main thread, module ot

Address Hexn dump Command Comments -
BE4E91CE - 504424 @z LEA ERX, [LOCAL. 1481

BE4E91C9 - 5@ FUSH ERAX <#=» =» OFFSET LOCAL.1435

BE4E21CA = 8095 ZF1006El LEA EDM, CESI+103F]

BE4E2 106 - B2 FUSH ED: Format =@ "Error reading file "Hs"""
BE4E2101 « ES EASBFFFF |CALL ®&a4812CH ot . Ba4E12C8

BEGES 108 « 53C4 A2 AOO ESF, 2 S

Analyser has recognized that procedure at address 004012CO0 is similar to printf: its first argument is a
format string. (In fact, this function displays error messages). Such procedures may have variable number
of arguments and use C-style conventions for the parameters, namely that calling program must remove
arguments from the stack when call returns. Command ADD ESP,8 after the call does exactly this: it pops
8 bytes of data, or two doublewords. The first doubleword is the pointer to format string. Therefore this call
must have one additional parameter. Format string indicates the same: it expects one pointer to the string.

String address is the second argument in the call. By stating <%s> => OFFSET LOCAL.148 Ollydbg tells
you the following: register EDX at the moment of PUSH EDX will contain address of the local variable 148
(148.-th doubleword preceding return address). Indeed, previous command (LEA EAX,[LOCAL.148])
loads this address to EDX.

Symbol => in comments means "predicted to be equal to". For example, PUSH ECX will push address of
the displayed format string... Wait! Operator at 004091CA just adds 0x1D37 to ESI. But where ESI is
defined? Somewhere in the code that precedes this call; in fact, this location is more than 300 bytes back.
The complete procedure has the following structure:

MOV ESI,OFFSET Ot.0045E7EC ; Here ESI is defined

PUSH ESI
; Code that uses ESI
POP ES

CALL Ot.xxx
EALL OT.yyy

LEA EDX,[LOCAL.148] ; Our code
PUSH EDX

LEA ECX,[ESI+1D37]

PUSH ECX

CALL Ot.004012C0

ADD ESP,8

51

At the beginning, program loads ESI with the address of static data block. This operation is not very
meaningful here but would make more sense in the multithreaded applications that use thread local
storage. Pair PUSH ESI/POP ESI preserves value of ESI from the modification. Then you see two calls to
unknown functions xxx and yyy. Why analyser is sure that they leave ESI unchanged? Well, either it was
able to determine this directly from the code of xxx and yyy, or you told it by the corresponding analysis
option (Advanced analysis | Unknown functions preserve regi sters EBX, EBP, ESI and EDI). All
Windows API function and many separately compiled procedures use stdcall convention, where functions
must preserve registers EBX, EBP, ESI and EDI.

Known API functions
OllyDbg contains descriptions of more than 2300 standard API functions from the following libraries:

« KERNEL32.DLL
 GDI32.DLL

e USER32.DLL

e NTDLL.DLL

« VERSION.DLL

« ADVAPI32.DLL

e SHLWAPI.DLL

e COMDLG32.DLL
e MSVCRT.DLL

It also knows more than 10000 symbolic constants, grouped into 540 types, and can decode them in the
code:

CPU - main thread, module ot

Address |Hex dump Command Comments = -
Aedzdc2sl] - 62 FREZ4CEB [PUSH DFFSET @B48E272 [Face = "Terminal™

AEd4z4c20(] - &H 20 PUSH 2@ FitchAndFamily = DEFAULT_PITCH!FF_MODERH
BEd4z4csF ()« GH Bg PUSH & Buality = DEFAULT _RUALITY

AE4z4c31 () - 6H B0 PLUSH & ClipFrecision = CLIP_DEFAULT_FRECIS
AE4246335 () « BH B85 PLUSH & OutputPrecision = OUT_RASTER_FRECIS
AEdz4e55 ()« £2 FFEOEOEE | FUSH BFF CharSet = OEM_CHARSET

GEd4=4c90(] - &H BO PLSH @& Strikelut = FALSE

BEdz4c2C) - SH BE PLSH @& Undexrline = FHLSE

AE424E3E(] - SH BB PLZH @ Italic = FALSE

AEdz4cpa(] - &2 BCBZEDAE | PUSH ZBC W=ight = FW_BOLD

BE4Z4cRS (]« &H B8 PUSH & Orientation = @

gE4z4c07) - 6H BE FPUSH & Ezcapement = @

AEd4ERS ()« BH B85 PLUSH & Width = &

AEd=4ehE(« &H B8R FUSH ©A Height = 1@.

Gid=d4en0f) - ES 96048388 | CALL {JMP.&GOI22.CreateFontAr (LGOI22. CreateFonth ¥

You can use known constants in assembler commands and arithmetic expressions. For example, CMP
EAX,WM_PAINT is a valid command for the Assembler.

Standard library functions

OllyDbg is able to locate standard library functions, like fopen, malloc or sprintf, by scanning the libraries
and comparing library code with the code of the debugged program. This is accomplished in two steps.

License agreements wit the IP owners may prevent you from any manipulations with the standard libraries
except linking with the code produced by the given compiler. Therefore our example is based on the
MinGW compiler, which is distributed under GPL.

On the first step you must select standard libraries supplied with the compiler and create the .udl file.
OllyDbg supports OMF (Borland, optionally Watcom) and COFF (Microsoft, GNU etc) formats, both as
libraries and a single object files. Usually they have extensions .lib and .obj. GNU suite uses .o for object
files and .a for object libraries. If MinGW was installed with the default parameters, then the main libraries
are located under c:\MinGWA\Iib.

52

Choose Debug | Create function library from the main OllyDbg menu. Press Add files , navigate to the
directory c:\MinGW\lib and select all listed files and libraries. Press Open. They will appear red in the
dialog, emphasizing the fact that they are not yet processed.

Now press Test. OllyDbg reads files and checks their contents. This operation is quick, and in the second
column you will see the messages like "48 images". This is the number of object files within the library that
contain binary code:

Create standard function library X|
Object and libran files:
Object and library files Message - Load list
libdlcapi.a H images _I
libdmoguids.a d images
libdnsapi.a B images :
libdplays.a B images Add files
l ibdpnaddr. a B images
penenss g s
ibdpn lobby . a images ;
libdpuoice.a H images Delete file
libdsetup.a H images
libdsound. a d images :
libdriapi.a B images Clear list
libduercg.a 1 image
libdrerc9. a 1 image
libdnuguid. a B images
libfaultrep.a B images
libgdi3z.a H images
libgdiplus.a d images
libgettentlib.dll.a B images
libgettentpo.a 117 images
libaettertpo.dll.a B images Test
libgetterntsrc.dll.a B images
libglaux.a B images
libglu3z.a H images Signature
libgmaon.a 1 image
libhal.a d images
libhid.a B images
libhidparse.a B images Save
libibertw.a T8 images
libicrmui.a B images
libicanw.a 1 image
libiconw.dll.a H images
libigmpagnt.a H images
libimageh lp.a d images ;I
libimm3z.a B images
II::"-.h-'l|r'||3"v'v"'\|||:|"-.|||:|gette:-:t|||:u.u:III.a Cloze |

How is it possible that file libgettextlib.dll.a is more that 1 MB large but contains no images? This file is an
import library. When selected, it reports to linker that, say, xmlTextWriterFlush and many other functions
are located in the dynamic link library libgettextlib.dll. This information is of no use to the OllyDbg.

There are also object files that implement low-level functions, like shifts or long divisions. They are located
under c:\MinGW\lib\gcc\mingw32\4.8.1 (here 4.8.1 is the MinGW version). Press Add files again and
select them, too.

Now you can remove all files with no useful images. But this will not influence analysis time. Therefore:
press Save and choose subdirectory udl (this is where OllyDbg looks for udl libraries by default, can be
changed in Options | Directories).

Search for standard libraries is relatively fast, but depends on the number of images in the library. It may
be wise to not include rarely used libraries into the udl file.

Now the library is prepared. Whether analyser will search for standard functions is controlled by the option
Advanced analysis | Detect standard library functio ns (*.udl) .

Let's load some file that uses MinGW library, for example MinGW utility dlltool.exe. Log window informs us
that Analyser has found many standard functions. In the list of names their type is marked as "Analyser".
But log also reports that there are two functions from the Borland's library. We are sure that MinGW
doesn't use Borland's code, aren't we:

53

M Log data =101 x|
Hddress | Message ;I
Analysing libgco_s_dw2-1
2 library functions from "Borland.udl®
168 library functions from "MinGW.udl®
275 fuzzy procedures
173 calls to known, 18 calls to guessed functions
39 switches and cascaded IFs, 236 loops
Analy=ing zlibl
2 library functions from "Borland.udl®
58 library functions from "HinGW.udl"®
278 fuzzyw procedures
333 calls to known, 18 calls to guessed functions
73 switches and cascaded IFs, 186 loops
Analysing dlltool
2 library functions from "Borland.udl”®
1285 library functions from "HMinGW.udl*®
2282 fuzzw procedures
3595 calls to known, 257 calls to guessed functions
v37 switches and cascaded IFs, 16811 loops s
YESFEEEE | Modu le "Ci~WIHDOWS~swstem32~IMM32.0LL"
1| v

There are really several very simple functions in Borland and MinGW libraries that have the same binary
code. For example, they may call standard function from the system DLL. Usually they have identical
functionality. On the other hand, standard library may include many identical functions that have (in some
sense) different meaning, like standard destructors. To play it safe, OllyDbg does not include ambiguous
functions into the udl library.

Search for standard functions on the left screenshot was turned off, on the right - on:

Addiess HEH dump Command - Addiess HEH dump Command -
HE4BAF 22 ClES B2 SHL ESI,:=2 HEEAF 22 ClE& B2 SHL ESI,

HE4@AF 25 297424 84 MOU [OWORD ESP+41,ESI BE4EAF 25 897424 84 MaL) EDNDRD ESF+41,ESI
HE4EAF 29 897C24 B3 MOU [OWORD ESFP+21,EDI __J BHE4EAFZS 897C24 ag MayL COWORD ESP+21,E0I _J
GE48aF 20 296424 ML COWORD ESFI1,ERHX BE4EAF 20 296424 HMOU [OWORD ESPJ.EHX
HE4@AF 38 ES SE3EGEAEE | CALL BDo4B8EACHE HE4@AF 38 ES 2B3EDEEE | CALL _bfd_alloc

HE4@AF 35 S5CH TEST ERX,ERX BE4EAF 35 S5CH TEST ERH,ERX

HE4@AF 37 894424 38 MOU [OWORD ESFP+361, ERX BE4EAF 37 894424 38 MOU [OWORD ESP+361, EAX
BE4EAFZE | =~ 74 4C JZ SHORT BE4EAFE9 BE4BAFZE (| -~ 74 4C JZ SHORT BE4EAFE9
HE4@AF30 SE9C24 DEEEE MOV EEX, COWORD ESP+E0E] HE4@AF30 SE2C24 DEEEE MOV EEX, COWORD ESF+E0E]
HE4EAF 44 897424 84 MOU [OWORD ESP+41,ESI BE4EAF 44 897424 84 MOU [OWORD ESP+41,ESI
GE48aAF42 297024 a2 MOU [OWORD ESP+21,EDI BE4EAF 42 297C24 a2 MOU [OWORD ESP+21,EDI
HE4@AF4C 890424 Mol COWORD ESF1,ERA BEAEAF 42 890424 Mol COWORD ESFI1,ERA
HE4EAF4F 895C24 Aac HMOU [OWORD ESP+HC], EBX BE4EAF 4F §95C24 Aac HMOU [OWORD ESP+HC], EBX
HE4E8AFSS ES SE8EFEEEE8 |CALL bR4l&&BE HE4BAFSS ES E8BVODEEE | CALL _bfd _bread

HE4BAFSE 2907 CHP EDI,EDH HE4BAFSE 2907 CHP EDI,ELD

BE4B8AFEA ([-~ 74 4C JE SHORT em4oAFAs BE48AFEA ([-~ 74 4C JE SHORT B848AFAS
HE4EAFEC || * EE &F450888 EHLL BB4BF4DB BE4EAFEC |1 > ES8 &F458888 EHLL de_gEt Error
GEd4EAFEl || - S3ES 81 SUE 1 GEd4EAFel || - S2ES 81 SUE X

BEAEAAFES (| = r7d BC JZ SHDRT HE4EAF 72 BE48AFES (| -~r7d BC JZ SHDRT BE4EAF 72
HE4EAFES || - | Crod24 BAAEES MOY COWORD ESFI,8R HE4EAFES || - | Crod24 BAAEE MOY COWORD ESFI,8R
HE4EAFED || « | ER FE47@AEE8 | CALL BH48FFFE Bt HE4EAFED || « | ER FE47@@88 | CALL _de_Eet_errnr X

54

Debugging

Opening the program

The simplest way to open the executable file in OllyDbg is to drag-and-drop it into the main OllyDbg
window. OllyDbg supports executables (.exe) and link files (.Ink). Debugging of standalone DLLs is also
possible, see below.

If you need to specify the command line arguments, select File | Open... from the main menu or press F3,
then type your arguments into the corresponding line. Length of arguments is limited to 1023 characters:

Select 32-bit executable and specify arguments 1[5[
Lack in: | = TEST ~| & & et E-
Tesk, exei

File narne: Idlltu:uDl.EHE Open I
Files of tupe: IEHec:utaI:nle,DLL o link [“exe. dl k]] Cance |

I
Argurments: I j

Current dir; I j _I
o

You can instruct OllyDbg where the to pause the newly started application for the first time by setting one
of the Start | When starting application, make first pause at options:

e System breakpoint - application will pause at ntdll. DbgBreakPoint;

e« TLS callback - at the entry point of the first TLS callback defined in the executable file. If there are
several callbacks and you want to check them all, set breakpoints manually. Callbacks are named as
<TLS_Callback_1>, <TLS_Callback_2> etc. If there are no TLS callback functions, first pause will be
executed at the entry point of the main module.

« Entry point of main module - at the module entry point, as defined in the PE header;

* WinMain - at the entry point of the function WinMain(), if this entry is known to the OllyDbg. If address
of WinMain() is unknown, first pause will be executed at the entry point of the main module;

« No pause - no pause at all, application runs immediately.

OllyDbg as a just-in-time debugger

You can register OllyDbg as a just-in-time debugger. In the Options dialog open panel Just-in-time and
press Set OllyDbg . Now, if some application crashes, you will be given an option to debug it. (If you
uncheck Confirm before attaching , all buggy programs will be automatically redirected to OllyDbg - this
is probably not what you want on everyday basis).

55

Let's investigate this possibility. Register OllyDbg, open Test.exe in a stand-alone mode and press button
"0:0"

Test application for OllyDbg vZ: Test.exe - Applic x|
: The exception Integer division by zero,
[Oxc0000094) accurred in the application at lacation 0x0040239a.

Click on 2K to kerminate the program
Click on CAMCEL to debug the program

Cancel |

Answer with Cancel, and OllyDbg will automagically start with CPU window positioned on the command
that caused the exception:

CPU - main thread, module Test

Address Heuw dump Camrmand Comment s ;I
BE4a235A |- C3 FETH
_ferodiv |f$ BE BlE8B888 MOL EHE, 1 _I
BEGEZI9E « EBEH B8880EEE Mo EDG, @

-~ B9 PBBAREEEE MO ECH, 8
Al = F7F1 OIL ECH
[]5] - C3 RETH
_Pushflaglrs 16 FUSH S5
BEE239E r 17 FOF S5 b
ERX=1 S
EDX=A L—
ECx=88888050
Test._Cerodiv+aF St

Now you can do anything, as usually. For example, you may point EIP to the next command. Select RETN
at 0040239A, choose New origin here from the pop-up menu and execute File | Detach from the main
menu (not available under Windows NT/2000). Test.exe continues execution as if nothing happened.

On detach OllyDbg removes all breakpoints. It doesn't resume manually suspended threads.

Attaching to the running processes

You can attach OllyDbg to the running process, provided that you have sufficient privileges. From the
main menu, select File | Attach... and choose process from the list of running processes.

If main thread is suspended (for example, application was created as CREATE_SUSPENDED), OllyDbg
will automatically resume it. For different reasons, this is not possible under Windows 2000. Attempt to
attach to the suspended application will result in crash.

Attaching to running process is controlled by the options in Start | When attaching to application, make
first pause at :

e System breakpoint - application will pause on the system breakpoint in the temporary thread. While
attaching process to debugger, Windows create new thread in the contents of the Debuggee. This
thread executes DbgBreakPoint(), giving OllyDbg the chance to make all necessary preparations. The
thread is marked as temporary by the OllyDbg. Note that under Windows 2000, OllyDbg is unable to
recognize this thread as temporary and reports it as an ordinary thread,;

« Application code - asks to pause application in the main thread at the location that was executing at
the moment of attaching. Usually this is ntdll.dll;

* No pause - application should continue execution as soon as possible.

56

Debugging of child processes
OllyDhbg is a single-process debugger. To debug child processes, it launches new instances of itself, so
that each child gets its own copy of the OllyDbg. This is possible only under Windows XP or higher
Windows versions, and only if parent process was started by OllyDbg.
Due to the limitations of the Windows, debugging of grandchildren is not supported. That is, if you debug
process A and it spawns process B, B will be passed to the OllyDbg. If now B spawns process C,
debugger will get no notification and C will run free. Of course, you can attach to the C later.

Debugging of child processes is controlled by the option Debugging events | Debug child processes

Breakpoints
OllyDbg supports three types of breakpoints:
e Software breakpoints on code execution;
« Memory breakpoints on memory access, writing to memory and/or code execution;

e Hardware breakpoints on memory access, writing to memory or code execution.

Additionally, you can set breakpoint on access to memory block (not available for DOS-based Windows
versions). They were discussed previously.

Each type has its own advantages and drawbacks. They are listed in the table below:

Type Software Memory Hardware
Principle of First command byte is Change of access Reprogramming of debug
operation replaced by INT3 or 1- protection using registers using
byte privileged command | VirtualProtectEx() SetThreadContext()
(HLT, CLI, INSB etc.)
Number Unlimited Unlimited 4
Conditional / Yes Yes Yes
logging
Execution speed | Not influenced May be very low Not influenced
(if not hit)
If set on the May crash anywhere May crash if pointer to Usually OK
wrong location protected memory is
passed to kernel
Detection by the | Very easy (read memory) | Very easy (VirtualQuery()) | Easy
application (GetThreadContext())

Note that Windows protects memory only in chunks of 4096 bytes. Therefore, if memory breakpoint is set
within the memory block with frequently accessed variables, OllyDbg will get many false breakpoints,
which may significantly slow down the speed of execution. In some cases, run trace with allowed
emulation of the commands may be faster! For details, see "Run trace and profiling". Caveat: avoid
setting memory breakpoints on the stack . If protected address is passed to the system, system call
may fail, terminating the application.

Simple breakpoint pauses execution each time the command is executed or memory is accessed. You
may also set conditional breakpoints that pause execution only if some condition is met, and conditional
logging breakpoints with many additional options. For example, they may protocol some parameters if
condition is true without pausing program.

57

All dialog windows that set breakpoint options have similar structure. As an example, here is the dialog
window of the software conditional logging breakpoint:

x

Set breakpoint at Test.00402195

Condition:

Expreszions [name=expr, name=expr...J:

L

Decode exprezsions as I.-'-‘-.ssumed by expreszion

L L L

Azsume function of tpe; I.-'-‘-.utn:nmati-:

Mewver On condition Always Fazs count [dec.]
Pausze program: - - v ID—
Laog walue of expressions: v - r "E':t'-‘al cont
Log function arguments: v - r '
Lag returned value: = (& (& [™ Periodical
I Disabled
Ok, Cancel

Logging breakpoints support four actions:

Pause program - application will be paused;

Log value of expressions - expressions specified in the second line will be evaluated and their
values protocolled to the Log window. You may use multiple expressions separated by comma and
use repeat counts to display consecutive memory locations, see chapter "Expressions"” above for
details. You may influence the decoding by specifying expression type in the Decode expression as
control;

Log function arguments - if breakpoint is set on the call to the known or suggested function, or if you
specify type of the function explicitly (Assume function of type), stack arguments will be decoded
and protocolled to the Log window;

Log returned value - if breakpoint is set on the command that immediately follows CALL of known
function and this function returns a value, the contents of register EAX will be decoded and
protocolled to the Log window.

For each action you have three options:

Never - action is not executed;
On condition - action will be executed only if condition in the first line evaluates to TRUE (non-zero)
Always - action always takes place.

Additionally, you may skip several first breakpoints by specifying the pass count. If Periodical is checked,
only each Pass count -th breakpoint will be processed.

As an example, assume that we want to protocol all messages of type WM_LBUTTONDOWN passed to
the main thread of the Test.exe. Here is the main Windows loop of this application:

58

[3 cPU - main thread, module Test

Address | Hex dump Command Comments -
EEdE217E [» &R B1 rPUSH 1 Femowe = PH_REMOLUE
Gad4Ez1vE (|« &R @& FUSH & M=aMan = WHM_HULL

EE4E217A (|« &R @& FUSH @ MzaMin = WHM_MHULL _I
EE4Ez1vC (|« &A B8 FUSH & hilnd = MULL

ER4Ez17E || » 8095 DCFEFFFF || LEA EDX, [LOCAL. 73]

BEdEz184 (| « 52 FUSH EDX pMsg =* OFFSET LOCAL.V3
EE4Ez125 (|« ES Bd4318168 CALL <JMP.%USER3Z.PeckMessager> USERZ22. PeckMessager
EE4E212Aa (| - S85C8 TEST ERX,ERX

Be4a212Cc (| « 74 23 JZ2 SHORT B@4E621E1

Ga4@=12E ||« 5080 DCFEFFFF || LEA ECH, [LOCAL. 73]

Ba4a2194 (| « 51 FUSH ECH [pﬂsg =» OFFSET LOCAL.V3
HE4EZ2195 | - EZ CEI16160 CALL <JHMP.%USERZZ2. Trans lateMessager | LUSERZZ. Trans lateMessags
EE4Ez19A7 || » 8085 DCFEFFFF || LEA ERX, [LOCAL. 73]

BEdEz21AE (| « SAE FUSH ERX [Dﬂsg =% OFFSET LOCHL.V3
HE4Ez2 171 - EE 5A318108 CALL <JMP.%USERZZ2.0ispatchMessageR> | LUSERZZ. DispatchMessagen
EE4E218E (| » S3BD EBFEFFFF || CMP [OWORD LOCAL.721,12

ea4a21Aa0 (| «~ 74 BB JE SHORT H@4E621EBA

Ga4a21AaF (| «~ EB CS JMF SHORT G8482176

Ea4az1el (| » &R 81 FUSH 1 Time = 1 ms

gad@zies (| « EE B2o@@los CALL <JMP.%KERHELZZ.5lesp> KERMELZZ.5leep =
AE4Az1B8 || «~ EB BC L JMP SHORT AB4E217E

Messages are fetched by the call to PeekMessageA(). This API returns 0 if there are no messages.
Sequence TEST EAX,EAX; JZ 004021B1 checks this condition and skips if message is missing. Next API,
TranslateMessage(), takes pointer to the message as its only parameter. Perfect, let's set breakpoint on
this call and log function arguments. However, if you try this, OllyDbg will protocol all messages, not only
WM_LBUTTONDOWN.

Structure MSGA passed to TranslateMessage() has message code as its second doubleword parameter.
Note that Test.exe is an ASCIl application and therefore API structure MSG gets suffix A that
distinguishes it from the UNICODE counterpart, MSGW. Have a look at the disassembly: at the moment of
call, register ECX still contains pointer to this structure. A pointer to the structure is the address of its first
item. If first item is a doubleword (4 bytes), address of the second item is ECX+4. This item is in the
memory. To get its contents, we must take memory address in the square brackets and specify memory
size. (As DWORD is a default, memory size is optional). Therefore the correct expression is [DWORD
ECX+4]==WM_LBUTTONDOWN. The constant WM_LBUTTONDOWN is known, we don't need to search
header files to get its value.

Let's use hardware breakpoint. Select call command, right click and choose Breakpoint | Hardware log...
Hardware breakpoints may trigger on the command execution, on memory access which is not the
command execution, or on writing to the memory (but not on their combination!) Choose Execution . In
this case data size is always 1 byte and second panel is grayed. Now select one of the 4 available
hardware breakpoints. In our case all breakpoints are free and it doesn't matter which one will be used:

59

Hardware breakpoint at Test.00402195 x|

Break. on: Data size: Hardware slat:
¥ Execution ¥ Eute &+ 1 |Empty |
i Access [RAW] € word 2 |Empty |
£ white £ Dword - |Em|:-t_l,l |
4 |Empty |
Condition:

I[DWEIFID ECx+d]==wM_LEUTTONDOWM

L

Exprezsions [name=expr, name=expr...J:

Decode expreszions as: I.-'l‘-.ssumeu:l by expreszion

L L L

Agzume funchion of bppe: I,-'l'-,utumati-:

Hewer On condition Always Pazz count [dec.|
Pause program: i i i ID'
Log walues of expressions: i - - IIEL‘”ENLHM
Log function arguments: - v - .
Lag returned walue; i~ (] e I Periodical
[~ Disabled
Ok Cancel

Confirm your choice, run application and press buttons "Current dir " and "Set vars ". Now have a look into
the Log window:

Address | Meszage
BE4E2195 |Call to USERZZ.TranslateMessage
BE1ZFESEd pMsg = BA1ZFEGSY —> M5GA {hWnd=B0BVHEEG, class = Button, tedt = Current Dir, Msg=WH.
BE4E82195 |Call to USER3Z.TranslateMessa
| HE1ZFEEd pHMsg = BE1ZFESd —> MS5A {hWnd=00E&AE04, class = Button, tedt = Set wars, Msg=WM_LEI
4

Look at the first entry. Parameter of TranslateMessage() is a doubleword containing 0012FE64. This
parameter is named pMsg and is a pointer to the structure MSGA. First element of the structure MSGA is
hwnd - handle of the window of class "Button" containing text "Current dir". Now comes the second
MSGA member, message identifier Msg which is equal to WM_LBUTTONDOWN, etc., etc.

In this example we were lucky because TranslateMessage() is a known function (present in the API
database). What can one do if this is not the case? Let's try slightly different approach. Have a look at the
command sequence:

0040218E LEA ECX,[LOCAL.73]
00402194 PUSH ECX

60

First command loads ECX with the pointer to the structure of type MSGA. Remove previous breakpoint
and set new at PUSH ECX. Now we must specify the expression to protocol: ECX. This expression must
be interpreted as a pointer to MSGA. Finally, the value of expression must be logged only on condition
which remains the same as in the previous case:

Condition:
|[DWORD ECx+4]==wM_LEUTTONDOWN |
E xprezsions [name=expr, name=gxpr...J:
= <]
Decode expreszions as: IF':::inter to MSGA j
Agzume funchion of bppe: I,-'l'-,utumati-: j
Hewver On condition Always Pazz count [dec.]
Pauze program: i« i i ID'
Log walues of expressions: - i i IIEUHENLHM
Log function argumerts: oy = [.

Press the same buttons again and inspect the log. Now it's more readable:

_lojx

Address | Message :I
HE482194 | HARD: ECX = MSG5H at address BEA1ZFE&d:

hllnd = BAHEFASBE, class = Button, tewt = Current Dir

Msg = WH_LEUTTOHOOWH

Kews = ME_LBUTTON

IParam = ¥ = ¥F4., ¥ = &

time 437ER5ER,

pt_¥ 284,

pt_Y = 298,
BE482194 | HARD: ECX = MSGH at address BEA1ZFESd:
hllnd = AHEEAS04, class = Button, text = S5et vars
Msg = WH_LEUTTOHOOWH
Kews = ME_LBUTTON
IParam = ¥ = &d., % = 13.

time = 4371796,
pt_¥ = 3rE. =
pt_Y = 4r8.

1| AW

Run trace and profiling

Run trace is the way to execute and protocol the debugged application command by command. In this
way, one can locate the most frequently executed pieces of code, detect jumps to nowhere or just
backtrace program execution that precedes some event.

In its simplest form, run trace sets breakpoint on the next command and continues execution. This
method, however, is very slow. Windows need tens of microseconds to pause application and pass
debugging event to the debugger. This limits run trace to 10-30 thousand commands per second on
Windows XP and maybe 30-70 thousand on Windows 7.

To accelerate run trace, OllyDbg can emulate commands internally, without passing control to the
debuggee. The emulation is currently limited to the 55 frequently used integer commands, like MOV, ADD,
CALL or conditional jumps. If command is not known or cannot be emulated (like SYSENTER), OllyDbg
passes it to the application. Still, execution speed reaches 300-600 thousand, in simple loops up to one
million commands per second. In many cases, this is sufficient for the "almost real-time" behaviour of
Windows applications.

61

Each traced command is protocolled to the large circular buffer. The protocol includes address, contents
of the integer registers and flags. If you need, you may save command, FPU registes and contents of the
accessed memory. Note that each option requires more memory and reduces the number of the
commands that fit into the buffer. For example, if buffer is 256 MB large and all extras are turned off, it
may keep up to 16.7 million commands, with extras on - only 7 to 10 million.

Most run trace options apply to the hit trace, too. Probably the most interesting trace feature is the ability
to pause execution when some event occurs (Trace | Set condition... from the main menu):

Condition to pause run or hit trace ! x|

Fause run trace when any checked condition iz met;

|nnunnnun |nnnnnnnn

[T EIP iz outside the range |nnunnnun |nnnnnnnn

™ EIPF points to modified command [backup necessan]

[Memom range 1 accessed IEIEIEIEII:IEIEIEI IEIEIEIEIEIDDD oh IFIeau:I j

[Memary range 2 accessed |IIIIIIIZIEIEIEIEIEI IIZIEIIZIEIEIEIEIEI an IHead j

[™ Condition 1 is tue

[Condition 3 iz tue

|
[T Condition 2 is tue I
|
|

[™ Condition 4 is tue

[T Command count iz IEI. [Current IEI. | Rezet

[T Command iz [1] I

ILIL_ILILILIL

[~ Command iz [2] I

O, Canizel |

Most options are self-describing. Option EIP points to modified command can be used to find entry
point of the program packed by self-extractor. (By the way, hit trace in this case is much faster). When you
start trace and option is active, Ollydbg compares actual command code with the backup copy and
pauses when they differ. Of course, backup copy must exist. The simplest way to assure it is to
permanently activate option Debugging | Auto backup user code

Pause on access to memory range can be implemented with memory breakpoints. However, 80x86 CPU
can protect only 4096-byte chunks of memory. If memory breakpoint is set on the actively used memory
block, execution will cause large number of false debugging events. To recover, OllyDbg must remove
memory protection, execute single command that caused exception and restore memory breakpoint
again. This requires plenty of time. If fast command emulation is active, run trace may be significantly - up
to 20 times - faster than memory breakpoint.

Condition is any valid expression that evaluates to TRUE (non-zero) or FALSE (zero), for example

EAX==0 or ([BYTE 450002] & 0x80)!=0. Registers are taken from the actual thread. The evaluation of
conditional expressions is very quick and has only minor influence on the run trace speed.

62

If you need to know how frequently each traced command was executed, choose Comments | Show
profile in the Disassembler, or Profile selected module or Global profile in the Run trace window. In the
first case, Comments column will show how many times this command is present in the trace data:

[cpU - main thread, module Test

Address | Hex durmp Command Frofile
GE4i15205 | - FF25 2Ci24266 | JMF COWORD <%USER3Z.BeginPaint »] 1.
EE41520E | - FF25 ABl24266 | JMF COWORD +&USERZZ.CharMestA>]

EE4152E4 | - FF25 A4124z0@ | JMP COWORD +<&%USERZZ.CreatellindowERAX] 28,
EE4152EA | - FF25 B2134706 | JMF COWORD <&%USER3Z.0eflindowProcAi] 195,
EE4152FE | $- FF25 AC124700 | JMP COWORD <&USER3Z.Destroullindows]

BE4152FE | %= FFZS BRla4:208 | JMF COWORD <%USER3Z2.D0ispatchMessageR:] 7.
BE4152FC | 5= FE25 Bdiladoo@ | JMP COWORD <&USERZ2.Enablellindow:]
aE415282 | 2= FF2E Bo124206 | JMP COWORD <&USER22.EndPaint] 1
BE415268 | 52— FF25 BClodeod | JMP COWORD <&USERZ2.EnumThreadilindows]
BE41526E | ¥- FF2S CBlad4z2068 | JMP COWORD <&USER32.FillRect>] 1
BE415314 | F- FF25 C4134-08 | JMP COWORD <&USER3Z2.GetClientRect] 1
BE41531H | %= FF25 Colad-08 | JMP COWORD <&USER3Z.GetkKewboardTupel] 1
BE415220 | 5= FF2S CC134:208 | JMF COWORD <%USER3Z.GetSusColor:] é.
2

BE415326 | 53— FE25 DEla4:-08 | JMP COWORD <&USERZ2.GetSustemMletrics’]
BE415320 | 5= FE2S Ddi24:06 | JMP COWORD <&USER22.LoadCursorH’]

BE415232 | &= FF2E Do124206 | JMP COWORD <&USER22.LoadStringf] =1,
BE415238 | 5 FF25 DClode06 | JMP COWORD <&USERZZ2.MessageBonA]
BE41522E | ¥ FF2E EB13q42068 | JMP COWORD <&USER32.FPeckMessagel>] 4415, *

Stand-alone Profile window lists traced commands, sorted by their frequency:

3 Profile of Test . =10 x|

Count | Module [Address Cammand Comrent s -
FTI36. |Test BE418ACE | MOV ERX,ESI

FI36. |Test BE418ACS | CMP AL, [BYTE EBX+11
FI36. |Test BE41@ACE | JHE SHORT @@d1@Ach
FI36. |Test BA418AC0 | GO0 EBX, &

F936. [Test BE418A08 | CHMP EEX, [OWORD EEF-41
36, | Test BE418A02 | JB SHORT @84160ACS
4413, |Test 88482176 | PUSH 1

4413, |Test Ba482173 | PUSH 8

4413, |Test BE48217A | FUSH @

4413, |Test BE48Z17C | FUSH 8

4413, |Test BE40217E | LER EDX, [EBF-1241
4413, |Test BA4EZ21234 | FUSH EDX

4413, |Test BA482185 | CALL <JMP.&USER32.PeekMezsager> hlind = MULL, HMsgMin = WF_HULL
4413, |Test BE48212A | TEST ERX,EAX

4413, |Test Ba48218C | JZ2 SHORT w84621E1

4413, |Test B841533E | JMF [OWORD <%USER32.PeekMessagerr]
4334, |Test BE4EZ1EB1 | PUSH 1

4334, |Test BE4821B3 | CALL <JMP.&KERMEL3Z2.5 leep Time = 1 ms

4334, |Test BA41526A | JMF COWORD <&KERHELSZ.5leepi] _:J

As you can see, snippet at address 00410AC3 was executed most frequently. It resides in the initialization
routine that is automatically executed during startup. Second most frequent code, as expected, belongs to
the windows loop of the main thread. Command PUSH 1 pushes parameter Remove of the API function
PeekMessageA() to the stack.

Run trace is controlled by the following options:

« Debugging | Allow fast command emulation - allows OllyDbg to emulate some frequently used
CPU commands internally (in the contents of debugger), thus accelerating the debugging;

« Run trace | Size of run trace buffer - allocates memory for the circular buffer with run trace data. As
a rule of thumb, one megabyte keeps 30000 - 60000 commands;

* Run trace | Don't enter system DLLs - requests OllyDbg to execute calls to Windows API functions
at once, in the trace-over mode. Note that if API functions call user-space callbacks, they will not be
traced, too;

« Run trace | Always trace over string commands - requests OllyDbg to trace over string commands,
like REP MOVSB. If this option is deactivated, each MOVSB iteration will be protocolled separately;

« Run trace | Remember commands - saves copy of the traced command to the trace buffer. Only
necessary if debugged application uses self-modified code;

* Run trace | Remember memory - saves actual contents of the addressed memory operands to the
trace buffer;

« Runtrace | Remember FPU registers - saves floating-point registers to the trace buffer;

* Run trace | Synchronize CPU and run trace - moves CPU selection and updates CPU registers
each time you change selection in the Run trace protocol.

63

Hit trace

The sense of debugging is to find and remove as many bugs in the debugged application as possible. To
approach this ideal, you need to execute every subroutine and every branch, otherwise latent errors are
preprogrammed. But how do you know whether particular piece of code was executed? Hit trace will give
you the answer.

It starts from the actual EIP. OllyDbg sets soft breakpoints on all branches that were not traced so far.

After trace breakpoint is reached, it removes it and marks command as hit. This allows to check whether
particular branch of code was executed. Here is an example: code at 004011CB was not yet hit:

[8 cPU - main thread, module Test

Address Hex dump Command I:crmment*s;l
bad4al iBC |p¥ 55 =FUSH EEF

HE4al 1BO = Z2EEC =MOL EBF,ESF _|
HE4al 1BF - 2B45 18 « MO ERX, COWORD ARG.3]

HE4@a11c2 - 2EEE bS8 « MO EDX, COWORD ARG.11

Ha4al 1cs = 2E7D BC ag «CHFP [EBYTE ARG.Z21,8

HE4@a11c3 - 74 18 +«JE SHORT @@4al10E

bE4al 1ckE = CeES gCHI4108 Al Moy [EBYTE <41A1&C],1

bE4al 102 - CeAS 60R14168 &1 HMaw [BYTE <41A1&01,1

bE4al 109 - EB 15 JHP SHORT B@diEl1FE

HE4al 108 » EBAD EB9F4 168 = MO ECk, COWORD 413FF&]

HE4@al1E1 - 2811 «MOL [BYTE ECXI,0L

HE4@a1 1E2 2215 ACH14166 «MOL [BYTE 41A1:C], 0L

HE4al 1ES - CEBE gDA14100 @8 («HMOU [EVYTE 41A1601,8

bE4al 1Fa ¥ A2 F2H14108 «MOL COWORD 41A17E1,ERAX

oE4@a1 1Fs - A2 EBcid4ion =MOL COWORD 41&1EE],EAX

bE4al 1FA = 33CE = #0F ERK,ERK

bE4al 1FC * A3 E4614166 «MOL COWORD 41&1E41,ERX

HiE4@l 281 = 2ECHE = xR ERx,ERX o

Hit tracing is very fast. After short startup period is over, application runs with almost real-time speed.
Problems may occur with indirect branches and calls, like CALL [0x405000] or JMP [0x123456+EAX*4]. In
this case OllyDbg provides two options. If Hit trace | Check destination each time is active, OllyDbg
keeps breakpoint on the command. This costs time but is safe. When Hit trace | Use analysis data to
guess destinations is chosen, OllyDbg assumes that analysis was able to determine all possible
destinations correctly and marks them all. The second way is significantly faster but may lead to missing
branches, or even crashes if false branch points to data or to the middle of the command. If you are in
doubt, use the first option.

Some antivirus programs place pieces of the code into the kernel memory (usually at address
0x80000000 and above). OllyDbg is unable to set soft breakpoints in the kernel memory breakpoints and
continues in the step-by-step execution mode until the user memory is reached.

Other hit trace options:

e Hit trace | Set breakpoints on known callbacks - if active, OllyDbg sets trace breakpoint on all
known callback functions when hit trace starts, so that calls from Windows API functions, like
SendMessage(), can be traced;

e Hit trace | When next destination is analysed as da ta: Continue hit trace / Pause hit trace - this
situation may happen either when Analyser erroneously recognized valid code as data, or if debugged
program is self-modified or creates code on-the-fly. In the second case, be careful: INT3 breakpoint
may have disastrous effects on the execution!

e Hit trace | When next destination is outside the co de section: Continue hit trace / Pause hit
trace / Trace code command by command - if debugged program creates code on-the fly or loads it
dynamically from the disc, setting INT3 breakpoints on it may lead to crash. Step-by-step tracing is the
safest, but also the slowest solution;

e Hit trace | Keep trace between sessions - hit trace will be saved to the .udd file and restored when
you restart the application.

64

Direct DLL debugging

Loaddll.exe

OllyDbg can debug standalone dynamic link libraries (DLLs). Windows is unable to launch DLL directly, so
OllyDbg uses small executable named loaddll.exe. This program is kept as a packed resource inside the
Ollydbg.exe. If file you are trying to open is a dynamic link library, OllyDbg automatically extracts
loaddll.exe and starts it, passing library name as a parameter.

Of itself, loaddll.exe is just a window without any controls. It loads DLL and starts infinite Windows loop,
waiting for the commands from the debugger. The debugging interface is implemented in OllyDbg.

I will explain this feature on the example of Windows' API function MessageBoxA that resides in

USER32.DLL. After library is loaded, you may set breakpoints and apply patches as with any other
application. When you are ready, select Debug | Call DLL export from the main menu:

Call DLL export x|

E spaort: I??DBBEBB MessageBoxA :I 4 arguments
: hOwner: HWwMD
' Mo arguments v Sort by name Follo in CRLU | Text A5
Caption: ASCI
" hOwner Dumpl_ |40 65 3 r3| 6l br 65 20| Messade = Type: MB_X
RRUND>] |0n<oii| oa a2 oa oo of oo g og| Cetime Do
T | Goazonis| o oo oo oo oo oo oo oo Preserves EBX, EBP, ESILEDI
FE4ZEAZE| B8 60 DA GR BA BB 68 @6
T BE4ZE025| B0 00 0O OB B9 OB 0D BE
Biannac| O 60 bo G Bb Db b0 bo
|D“"'131 =] | B5iaa03E| B8 23 e a Ba ba 6a e hd|
r) Contents of registers:
Captian Durpz |42 61 v@ 74 69 6F GE | Caption =
HE4SH4ES| 08 0O BO BE G0 BB 00 0D Before call After call
[Punp2 | B
EE4ZE4Z0| B8 B0 0GR BA BB 68 @6 B IE [|DDDDDDD1
= Type BE436425| B0 00 0O OB B9 OB GO BE
Frori o] | B R EEEE D ccx o =] [
ME_OKIMB_ICOl > | | ;0050050 6 on oo 66 6 6o 06 oo =l
EDX [B ~| [ooaoeos
= Argh Oumps 68 GE DO HE BH BE 66 68 I —I I
g e
B =] |@eeiin GG 53 6a e g ag oo oo @
' | Geiz0212| o0 6 oo 68 6 oo 06 0B EBx I [IDDDDDDDD
coiooeolaa g8 6 808 8 8 0
= frgh GE4ZAE56 B0 BB 6B BB G DA BO 85 Esl |E' LI |D':":":":":":":'
@ —] |ee94ze220| 00 o GO B8 6o 6O oo oo
BR43E540| B0 B0 0O OB GO BB GO BE EDil |B =] |DDDDDDDD

 Amg?

Dumped 2]
GE42ACHC| B0 G0 G0 @8 88 G5 B8 88 v Hi

|u vl AE4ZACIE| B BE GO BA AR BE B GO ' Hide on cal Call export |
GE426C15| 60 G0 G0 @8 B8 G5 B8 88 [Pause after call

GE4ZECo0| BE B8 B0 88 08 88 88 08

=)
=)
=)
=)
=)
=
=
=
=
=
=)
=)
=)
=)
=)
L3 K

O g = rrrirr
5 =1 |oezacis| 00 o oa oa 6o oo o8 o Call finizhed, duration 48 662971 =
GA4ZACA0| BE B3 GO BB A BE B8 B8 j Eax = D0OK
Subroutine removed 4 doublewords from stack
 Agd [T GO0 00 OO G868 68 58 88 T
BEGSEEE | BE 68 68 BE BE DR BE 68
|E vl GE4Z1016(88 00 G0 @9 B8 B9 68 B0
BE4SE1E(B0 68 68 BE B BR BE 68
GE4Z G260 B0 BB 6B BB G DA BO BB
A0 B4 1EEE[B0 B0 6B BB B DR BD 68

HE4ZIESE| BE B8 6O @R @3 BE 86 68

I—_, AE431022| 68 B8 0O 03 03 B3 G0 0D |
B 71 |58421640(B0 D GO BR 00 BE OO GB ;l Cloze

On the top there is a list of all function exported by the library. Select MessageBoxA. This API is in the
internal database. OllyDbg knows that MessageBoxA() expects 4 arguments and even able to tell you
their names and types. The first argument is the handle of the parent window, second ant third are
pointers to the null-terminated ASCII strings, and the last one is a combination of bits with symbolic names
MB_ xxx.

As the number of arguments is known, debugger automatically checks radio button on the left that

indicates the presence of 4 parameters. You may enter them in the corresponding edit controls or select
predefined parameters from the drop-down list:

65

e« <HWND?> - handle of the window owned by the loaddll.exe;

e <HINST> - instance of loaddll.exe;

e Dumpl .. Dump 10 - pointers to 10 predefined memory areas, 1024 bytes each. Five dumps in the
dialog display contents of areas Dumpl to Dump5, but you may change it using Go to | Expression
from the pop-up menu.

If function requires register parameters, enter them in the right controls. Standard Windows API functions
never use registers.

Let's set the parameters. The first is the handle of the parent; here <HWND> is the best choice. Second
parameter points to the ASCII string that will be displayed inside the message box. | have chosen Dumpl,
but any other memory address inside the communication area would be good, too. We want to display text
"Message text". Select byte with address Dumpl, choose Edit | Binary edit from the menu and in the
ASCII field type "Message text".

In exactly the same way, set third parameter (Dump2: "Caption”). Set fourth parameter to
MB_OK|MB_ICONERROR. OllyDbg knows these constants.

We are ready. Press Call export . Message box will appear:
x

@ Message text

If option Hide on call was checked, Call DLL window will temporarily disappear. Press OK in the message
box, and window will be back. Note the message in the bottom right corner: "EAX = IDOK". It indicates
that MessageBoxA() returned IDOK (constant 0x1) as an answer. Another message, "Subroutine removed
4 doublewords from the stack”, confirms that this Pascal-style function uses 4 stack parameters.

Loaddll.exe is written in Assembler. Its source code is freely available. There are several patch areas

where you may add functionality to the program. Note that if Loaddll.exe is already in the OllyDbg
directory, OllyDbg will use existing version.

66

Help

Help on commands

OllyDbg has integrated help on many 80x86 commands. Select command and choose Help on command
from the menu (shortcut Shift+F1):

Address | Hex dump Command Comments
EEEE T L] RETH
BA43F149 | Frs C8 3CHE 08 EMTER 3C,8
AR4ZF 140 - RIS =t

ey =121

BA43F 14F
BEA43F 158 Command: ENTER 2C, 8 ;I
BEA43F 151 Hew dump: C2 2CAE GG

BEA43F 152
BR43F1EEB
BER43F15E
Ba42F e
BR43F 163
BA43F 166
BEA43F 162
BA43F 16
BA43F 16E
BR43F17a
BA43F 172
BR4ZF17E
BR43F 17
BA43F17E
BA43F17E
BEA43F 128
BE43F 122
BER43F 126
BE43F 132
Ba43F12E
BA43F 15E
BA43F 15F
BEA43F 132
BEA43F 135
BE43F 196
BE43F 133
BE43F 130
BEa43F 13F
BA43F1R2
BA43F1AS
BEA43F1A2
BEA43F 1AC
BE43F 1AE
Ba43F1B1

Creates a stack frame. Equiwvalent to the following sequence of commands:
FUSH EEBF i Preserves old frame pointer
Haw EBF,ESP i Creates new frame pointer
SUE ESP, 3C : Reserves local data

EMTER is uzually the first command in the procedure. In this case, after
its enecution stack will hawe the following Lawout:

Free memory

ESFP->
[Lozal data { 3C bwtes of local data

EBP-* Old EBP
Rt addr

] Stack frame

Arguments A

The second operand in this instruction is the so called nesting lewel, it
requests CPU to get and push frame pointers of the embracing procedures,
thus allowing access to their local data. Form with non—zero nesting is
pract ical ly obsolete, because modern high-lewel languages don't use nested
procedures. This command doss not affect flags.

=

A ® B E o m o E o E o ® o E o® o E N o®moE N oE N oEoE N E E N OE EEEoEEEEEEoEEoEoEE

2B70 28 | FHOU EDT, [OWARD EEF

OllyDbg attempts to describe exactly the selected command with its operands. Currently help is available
for all integer, FPU and system commands. MMX, 3DNow! and SSE commands will be added later.

Help on API functions
If you possess Window's API help file in .hlp or .chm format (for example, old good win32.hlp), you can
attach it to the OllyDbg in Options | Directories | Location of API help file . To get help on API, select
call to API function or entry point of this APl and press Ctrl+F1 (or choose Help on API function from the
pop-up menu).

Due to the legal reasons, help file is not included into the distribution.

67

Customization

Fonts

Every table window in OllyDbg gives you the possibility to select one of the 8 fonts:

EJ watches =10 x|
Expression Ualue -
COWORD EDwI Update hrleR 24R4280C3 (61476397 1.1
Insert watch,., Insert
Edit watch, .. Enker
Delete watch Dl
Edit walue, ..
2EM Fixed Fonk
Copy to clipboard 3 . bk . ot
v Terminal &

Appearance Always on top S
wskem Fixed Fon

Autoupdate]

i Courier (UNICODE)
Hide ba Lucida (UMICODE)
Shiowe horizontal scrall e

Fonk 5
Default columns
Fonk &

Calars 3

By default, OllyDbg uses font "Terminal 6". It is small and perfectly readable, therefore OllyDbg is able to
display plenty of information. But Terminal 6 knows only the basic OEM character set, and may be way
too small for visually impaired persons.

You may select different predefined font or redefine existing. These fonts are available when you start
OllyDbg for the first time:

OEM fixed font:

-l x]

Address |Hex dump Command |

aa482332 (] -~ Y6 34 JBE SHORT 00462368 J

a8482334 || - FF45 F4 INC [DWORD LOCAL.31

aa4a2337 || - EE 862EB100 CALL <JMP_&HKERHNEL3Z _GetTickCount>

aa48233c || - 8945 F8 MOU [DWORD LOCAL_21.EAX

aa4a233F || - FF?5 F4 PUSH [DWORD LOCAL.31

a8482342 (| - FF?S5 FC PUSH [DWORD LOCAL.11

a09402345 || - 68 B26A4100 || PUSH OFFSET BA416A82 |
Terminal 6:

1T

Hddress |Hed dump Comrand Comments ﬂ

[EEEEEEEE]) JEE SHORT @RA4EZ3IE3

AE4Eaz2241 - FF45 F4 IMC COWORD LOCAL.Z21] : E_I

EE4E2227]« ES BEZEQ1GH CALL <JMP.2&KERMEL3Z2.GetTickCount > CKEERMELZZ2. GetTi

EE4az32C|) - 8945 F2 MOL COWORD LOCAL.Z21,ERX

ER4Ez23F |1« FFPE F4 FUSH COWORD LOCAL.Z] “Hux =% [LOCAL.

EE4Eaz342|) - FFFPS _FC FUSH COWORD LOCAL.11] 4Wix = [LOCAL.

AE4EZ345)) - 68 S2EA41AR FUSH OFFSET BB416AS2 Format = "Thre:

HE4Ez34A || « 8085 FBFEFFFI| LER ERX, [LOCAL.&SE]

AE4EZIEA|] « BB FUSH ERX Argl => OFFSET

HE4E2251] « ES S2A288E0 CALL __ org_sprintf Test._ org_sp

68

System fixed font:

B

Address (Hex dump Command ﬂ
Aaupz332|| -, 70 34 JBE SHORT 88482368 J
BB4B2334%] - FF45 F4 INC [DWORD LOCAL.3]

AB4B2337|| - E8 BoZES188 CALL <JHP.&KERMHEL32?2.GetTickCount>
BO4LB233C|] - 8945 F8 MOU [DWORD LOCAL.2],EAX

BB4B233F || - FF7% F4 PUSH [DUWORD LOCAL.3]

ARLAD T WD A FETYCDC FI* PIHSH rnonen 1 nral 41 j

Courier (UNICODE):

EE

Address |Hex dunp Commatd Cnm.m.ﬂ
00402332 (] ... 76 34 JEBEE SHORT 00402368 J
00402224 () - FF45 Fd4 INC [DWORD» LOCAL. 3]

o040zz27(] - EE 2&ZE0100 CALL <JMP.SsEERNEL3IE. GetTickCount = CEER
O040F330 () « 8345 F8 MOV [DWORD LOCAL. Z],EiAX

O040Z33F] -« FF7E F4 PUSH [DWORD LOCAL. 3] =%u
00402342 () « FF7E FC PUSH [DWORD LOCAL.1] =%3
00402345 | - &8 82644100 PUZH OFFSET 00418482 Fnrj

Lucida (UNICODE):

B

Address |Hex dump Command Comments ﬂ
oo402332([- 76 34 JBE SHORT 00402365

00402234 |1« FF45 Fd IMC [OWORD LOCAL.Z] . .
oo402237 |« ES S&2E0L00 CALL <IMP.&KERMEL3Z.GetTickfount= CKERNEL3Z .GatTAc
oo40223C |« 8345 F8 MOV [OWORD LOCAL.2],Efx

0o40223F ||« FFr5 F4 PUSH [OWORD LOCAL. 3j <= == [LOCAL.
oo402342| -« FFr5 FC PUSH [OWORD LOCAL.1] <¥1= == [LOCZAL.
004022451« 68 82644100 FUSH OFFSET O0416AS2 Format = "Threz
o040z2244)]« 3085 FOFEFFFI) LEA Efs, [LOCAL.SS]

ao402325001 « 50 FUSH EAX Argl == OFF5ET j

Fonts 5, 6 and 7 are initially identical with Terminal, System and Courier. Note that some fonts may be
missing (and replaced by other fonts) on your installation of Windows.

OllyDbg allows only fixed-size fonts where all charactes have the same width. Therefore you can't use,
say, Times New Roman - it simply wouldn't fit. Some characters, like W, were clipped, another, like I,
would appear misadjusted.

Note that fixed fonts are not as fixed-width as one may imagine. Kanji or Hangul symbols are usually twice
as wide as ASCII subset. If you want to display them in the dumps without clipping, | recommend to turn
on the option Dump | Use wide characters in UNICODE & multibyted umps.

If you want to change font appearance, open Fonts options panel. Please note the following: changes that
you make here apply only to the selected font. If Disassembler uses Terminal 6 and you edit OEM fixed
font, you will see no changes in Disassembler pane. Either adjust Terminal 6, or select OEM fixed font in
the Disassembler. Note that any modifications take effect instantly, for example when you press OK or
Apply in the standard font dialog. But if you select different font at the top of the Fonts options panel, this
does not automatically change the fonts chosen in the OllyDbg windows!

Back to the Fonts. Button Rename allows you to rename the currently selected font. This action is of
rather cosmetical nature. In fact, fonts in OllyDbg windows are selected by the slot index, not by name. If
Terminal 6 is selected in Disassembler and you rename Terminal 6 to Monitor 10-4, not a single pixel in
the Disassembler will change, only Appearance menu will show you that currently selected font is Monitor
10-4.

Button Change invokes standard dialog that allows you to choose font and define its size and
appearance. It lists all fixed-width fonts installed on your system.

69

Controls Height adjust top and Height adjust bottom add or remove up to 5 pixels on the top and on the
bottom of each displayed line. For example, capital letters in Terminal 6 are seven pixels high and font
height, as defined in the font description, is eight pixels. One pixel distance between the lines on the
screen is not sufficient, especially when fixup underlining is on. Therefore OllyDbg adds one additional
pixel at the top of each line. The height of Courier New, on the other hand, is exaggerated, so it's
necessary to remove two pixels on the top:

options x|

There are eight colour schemes that determine the colours used in the table windows. Each scheme can
be selected into any table (pop-up menu Appearance | Colours). Only the first four schemes are initially

defined:

Black on white:

Lode Fonts
M nemonics
Operands -
Cump Font: I Courier [UHICODE] j Renamne |
Strin_gs
Debugging Faont parameters:
Debugging data - -
Start Height: 12 pinelz Change |
Events Wfidth: 7 pirels
Exceptiong Style: I armal
Run trace Charzet: Diefault
Hit race Face: Courier Mew
SFx
Just-in-time . : -
Analysis Height adjust: top I.E piels vI . bottam IN.;.nE vI
Advanced
Irvwalid commands Example:
Search 00000000 |[EHighlighted text
CFU 00000001 ||| Selected line
tdare CPLI Current EIP
Directories Ereakpoint
Erars and warnings oooooood | ~Conditional breakpoint
Appearance 0o00000s ||| Disabled breakpoint
Defaults EIP at breakpoint
Chartu aooooooT? Grayed text
aoooooos Normal text
gooooons MNormal text
Colours oooo00okll Normal text
Code highlighting
_ Test-to-zpeech
Miscellaneous Restore defaults | 1] 4 Cancel
Colours

2] Dump - Test:text O] x|

Address | Hex dump | Cormrand | Comments ﬂ

BE4ET 1A ED] MOF

BE4EF1FE 26 HOF J
t E3 *PUSH EE: Test.BA4AFIVCI guessed woidl

BE4EF 17D E& «FUSH ESI

BEGEF1FE 2EFZ « MO ESI,EDX

BE4EF 128 SE0S + MO EEX, ERX

BE4EF 182 EZ 90FFFFFF |+ CALL B8487124 ;I

70

Yellow on blue :

[] Dumip - Test:.text

Caomments

Marine:

=101

Address | Heuw dump | Camrand | Caomments ﬂ

BE4E71FA EL] MOF

BE4ET1FE 15| HOF J
¥ E3 «PUSH EER Test.BA4BF1TCI guessed woidl

BEGEF 170 « Eg #*FUSH ESI

BE4EF1FE . Fz2 « MO ESI,EDHA

BE4EF 128 - SEDS « MOL EEX, ERX

BE4ET1E2 = E& SDFFFFFF |+ CALL Gad4aviz4 ;I

Mostly black:

m Dump - Test:.text

Hddress Hex dump Comrent s
':'E1

The remaining four default schemes, imaginatively named Scheme 4 to Scheme 7, repeat the first four.
Colour schemes are freely editable:

options X
o Colours
Mremonics
Operands
Lump Schermne: IEIau:k o white j Fename |
Strin_gs
De%ugt?mg_ dat Elements aof selected scheme: S ystem colours:
St‘?artuggmEI = ‘ormal
Events Highlighted text
Exceptions Grayed test
Run trace Current EIF
Hit trace rizonditional breakpaint
SFx Conditional breakpaint
Justin-time Dizabled breakpoint
Analyzis Breakpoint at EIP
Advanced Augiliary elements
Irvalid cormmands Idrnderline & zelect

Search Custornizable colours:

! Example:

00000000 || FH gl ighted text --
More CPU 00000001 [SE?EEtEd 1ime

Directories gu rrent E{P - -
1 rearpain
'Ern:urs and warnings Cn:_\ndEt'in:\na.'l breake —
PPEarance 00000005 || | Dizabled breakpoir
Defaults EIF at breakpoint
Startup 00000007 [|Larayed text
Fants 00000005 || Mormal text - -
00000002 1 Wormal text

Code highlighting
Tedt-ta-zpeech

Miscelaneous Restare defaults | 1] Cancel |

71

Exactly as with fonts, changes that you make here apply only to the scheme that is selected on the top of
the Colours panel. If scheme selected in Disassembler is Black on white and you edit Mostly black, you
will see no changes in the Disassembler.

Elements have more or less descriptive names. Auxiliary elements are currently unused (but plugins may
use them).

OllyDbg defines 20 basic colours which are displayed in the top half of the panel. They belong to the
default colours of the 8-bit palette. This should minimize the number of palette changes in the improbable
case of the ancient video card. Additionally you can define 16 custom colours - just doubleclick the
corresponding square.

To change foreground, select element and click left mouse button on one square with the desired colour.
Letter F moves here, indicating Foreground. Right mouse button selects background colour. The changes
are applied instantly. If colour scheme in one of the visible table windows coincides with the edit, you will
immediately see the results. Button Restore default sets colours predefined for the scheme. Button
Cancel rolls back all modifications.

Code highlighting
There are seven possible code highlighting schemes. Initially OllyDbg defines only three:

Christmas tree , definitely exaggerated:

B

Address |Hex dump Command Comment s ﬂ
EEdEidq4F|] - 8045 FC LEA ERX,CLOCAL.11

BE4Ba1452(]1 - 5@ FUSH ERA J
Ba4E14531 « 6H 11 FUSH 11

HE4E1455| « FF35 AOR141Em PUSH

BE4E145E(| « FFEE F@ EAEE COWORD LOCAL.4]

ER4E145E]] « 8945 F2 MOL [OWORD LOCAL. 21, ERX

ERd4ai4el|] - 8370 F8 @@ CHF [OWORD LOCAL.21.8

Ba4a1465(] -~ 75 8D JHE SHORT BE4a1474

EEdEidqey|] - 68 HESGF4188 | PFUSH OFFSET @B41&7AE Format = "Thoead hidden™
BR4E146C(] - ES 4FFEFFFF | BEEE A84812CA Test.@84812C8

BEdE1471(]« 59 FOF ECH j
Aad4@a1472|] « EE 18 JHMF SHORT BEA4614584

Jumps and calls:

=101

Address |Hex dump Command Comments :I
EEdE144F [« 2045 FC LEA ERX, CLOCAL. 11

BEA4A1452() - 5@ FUSH ERX _I
EE4E14ES(« &R 11 FUSH 11

Ga4ei145]) - FFSE AERid4ia PUSH [OWORD 41A1AG]

EE4E145E(] « FFEE F@ CALL [OWORD LOCAL.41

FE4ELI4EE(] 0 8945 F3 Mol COWORD LOCAL.Z1,ERX

EE4El4sl (|« 8370 F8 @8 CHF COWORD LOCAL.Z1,8

BE4E14eE(] « FE B0 JHE SHORT EE4E1474

EER4A14E7 (|« &2 ABEF41688 | PUSH OFFSET BA4167AE Format = "Thread hidden™
EE4E14eC(| « ES 4FFEFFFF | CHLL B84812CH Test.884812CH

BE4E1471(] - 59 FOF ECH

BE4E1472(] «~ EB 18 JMP SHORT G88481454 ;I

Memory access:

S

Address |Hex dump Command Comment s ;I
AEd4al44F | - 8045 FC LEA ER®,CLOCAL.13

BEdEl4s2(l - S8 FUSH ERH _I
EE4E14ES(0 &R 11 FUSH 11

BE4E14E5(1« FF35 A@AA14160 PUSH [[DWORDNSTRTRED

EE4E14ER(] « FFEE FA CALL COWORD LOCAL.41

EEA4ALT4EE(] « 2945 F2 MOy COWORD LOCAL.21,EARX

EE4E14E1 () - 837D F8 B8 CHF [COWORD LOCAL.21,8

GE4a14EE(] -~ F5 B0 JHE SHORT Bad4a1474

EEdal4sd (|« &8 HEBEF41@8 | PUSH OFFSET bDE41&7AB Format = "Thread hidden™
BE4El4sC(| - ES 4FFEFFFF | CALL BB4812CH Test.B84812CH

BE4E14FL(L « 59 FOF ECH LI
BE4A1472[] v EB 18 JMF SHORT BE4E1484

72

Highlightable objects are commands and optionally their operands. Commands are divided into the
following groups:

Unconditional jumps

JMP, JMP FAR

Conditional jumps

JE, JNZ, ...; JCXZ

PUSH/POP PUSH, POP, PUSHF, POPF (PUSHA and POPA are interpreted as
plain commands)

Calls CALL, CALL FAR, INT

Returns RET, RETF, IRET

FPU, MMX, SSE

All FPU, MMX, 3DNow!, SSE and AVX commands

Bad, system and
privileged commands

I/0: IN, OUT, INS, OUTS, ...; system commands: ARPL, SYSENTER,
...; privileged commands: HLT, INVLPG, LGDT,...; bad commands:
LEA ESI,EDI. Note that UD2 is a documented and therefore plain
command

Filling

NOPs used as a filling between the procedures: NOP, LEA ESI,[ESI],

Modified commands

Command that differ from backup

Plain commands

All remaining commands, like MOV or ADD

If option Highlight operands is active, operands are highlighted separately:

EAX, ESI, AX, AL, ...
ST(0), MMO, XMMO, YMMO, ...

General registers

FPU, MMX, SSE
registers

Selectors and system
registers

FS, CRO, DRO, ...

Stack memory Memory address includes ESP or EBP

Other memory Memory address does not include ESP or EBP

Constants pointing to
memory

Constant that points to memory belonging to some module

Other constants All remaining constants

Closely related to the code highlighting is register highlighting. If dump window shows disassembly, open
context menu and choose Highlight register | <general-purpose register> . This option has priority over
code highlighting and visualises specified register and its parts. For example if you select EAX, OllyDbg
will highlight EAX, AX, AH and AL.

Shortcuts

The default shortcuts are based on the scheme used by Borland tools (I am a big fan of Borland). Most of
you are probably better familiar with the Microsoft's Visual Studio. Not a problem - shortcuts can be edited
on the fly. From the main menu call Options | Edit shortcuts... Select item and choose the combination
of keys. If this combination is not allowed, reserved or conflicts with the existing shortcuts, you will be
warned. If there are conflicts and you press Apply , conflicting shortcuts will be deleted.

Modifications to the existing set are saved to the ollydbg.ini. By pressing button Save, you can save your

shorcuts to the separate file. You may freely distribute the modifications - in fact, | encourage you to do
this.

73

GUI language
OllyDbg 2.01 supports multiple languages in user interface. Note that this is still an experimental feature.

This is how you can translate OllyDbg to the new language. Download file ollydbg.Ing. This is a UNICODE
text file:

EN English

/I ANALYSER:206
EN Analysing %s - $ - press SPACE to interrupt

/I ANALYSER:227
EN Analysis interrupted

Lines // ANALYSER:206 etc. are comments that indicate the first occurance of the string in the OllyDbg
sources. You may strip them from the file, but they ease the troubleshooting.

First you must define the one or more new languages. Assign them two-letter identifiers and, directly after
the line "EN English", add identifiers followed by the language names, first in the new language and then
in English.

Then translate, one by one, all 4100 text strings used by OllyDbg. Each translated line must begin with the
language identifier and follow original line. Please take special care when translating format specifiers.
Their order must remain unchanged. Don't replace format characters by the characters that look similarly
but have different codes, like Latin i (U+0069) and Cyrillic i (U+0456) - this may lead to crash! Positions of
ampersands in menu items must be changed to define new menu shortcuts. Dollar symbols have special
meaning, keep them at a similar position:

EN English
DE Deutsch (German)
UA vyxpaincoxa (Ukrainian)

/I ANALYSER:206

EN Analysing %s - $ - press SPACE to interrupt

DE Analysiere %s - $ - zum Anhalten driicken Sie die Leertaste
UA Ananisyio %s-$ - mo® BYNMHUTHM, HATUCHITH IPOMNYCK

Il ANALYSER:227

EN Analysis interrupted
DE Analyse gestoppt

UA Ananis nepepBaHo

When you are ready, save this file to the directory containing ollydbg.exe and start OllyDbg. To change
language, open main menu and choose new language from the File | GUI language . This menu is always
in English:

74

ollyDbg

File Wiew Debug Trace Plugins Options Windows Help

open...

Set new argurnents. ..

Attach...
Exit

F3

Alt+x

GUI language

1 C0leghOdbg2 TESTY Test, exe

2 CAMinEWibintooo, exe

Endlish

WrpaiHceka (Ukrainian)

Language will change instantly. It is not necessary to restart the debugger. Only few elements, like
window titles, will be translated first when you reopen the window. Translatable commens created by the
Analyser are kept in the .udd file; to change them, re-run analysis.

To debug this feature, | have translated all strings to chicken. A good explanation is available here:
www.youtube.com/watch?v=yL_-1d90Sdk and as PDF here: isotropic.org/papers/chicken.pdf. You can
download chicken language file from the OllyDbg homepage:

Chic Chic Chicken Chicken Chicken Chicken Chicken Chic

OllyDbg - Test.exe

44 x| o+ 0] b+ 0 | 0| 6) | R |]

Chicken |Chic

| Chicken

| Chicken

|Chicken

|chic|chicken

BEE1BEEE| BRER] BEG
CRBZEAEE | BREE]BEE
Ba12CA88) B8EE]1 005
?BIEDBBB AEEE3a88

Chicken chicken
Chicken chicken

Chicken ch chicken chicken

: [& cH1 - chicken chicken, chicken Test

Chic |[CH
Chiz |CH Chicken
Chis |CH

Chiz [CH ‘

"|Chicken |Chicken Chicken Chicken
: ARdazoAn il [=I=E1=NrT=] I MOl _Chns LN Argll
[slaE i » Argl
: e Chicken o
92 chic b Test . OB482EE1
aad == : LOCAL. 1]
|22« Chichicken... Chicken () |0 LOCAL.F])))
(1 aae : i Chicken (chicken ¥PFFF..Z288@, 2 chickenl
aas Chicken.., Chicken
] fae b : ZETE
1| oee Chichicken... Chicken (;] Chicken FFFF, 2868 chicken Test.d4BZEED
12290 chicke .
165 hicken +ECH+482E02]
[

Renaming the ollydbg.exe

If you rename main OllyDbg executable file to, say, alias.exe, it will automatically change many settings:
name of the main window (alias), name of the initialization file where it keeps the settings (alias.ini), class
names of the windows (alias_ODW:in, alias_ODMDI, ...) etc. However, there is a problem. Plugins are all
statically linked to the file ollydbg.exe. They cannot link to the file with different name.

To overcome this problem, OllyDbg attempts to temporarily change the name of the main module in the

memory. This works well under Windows XP. However, | can't guarantee that this will work under any
other version of Windows.

76

Apologies

"We apologize for inconveniences"
Douglas Adams

I'm not a native English speaker. Please forgive me all the grammatical errors. | would be very pleased if
you let me know about especially unhappy phrases and suggest replacement.

| apologize also for the semantical errors in the C code. They usually result in a window reporting that
processor exceptionally dislikes command or data at some address. Of course, | can only blame my
otherwise excellent compiler because it did literally what | wrote, not what | meant. Please forgive him...
and send me the file errorlog.txt that will be created on this event:

OLLYDBG EXCEPTION PROTOCOL

This file is created by OllyDbg due to unrecoverabl e error. It
contains data necessary to locate and remove this a nd previous
errors. Please describe circumstances that preceded exception:
>

>

>

>

and email protocol to:
Ollydbg@t-online.de
Feel free to remove any private data. Thank you for your help!

Operating system: 5.1.2600, platform 2 (Service P ack 2)
OllyDbg version: 2.01.00 alpha 4

Exception code: C0000094

Exception address: 022B12B7

Executable module: C:\Oleg\Odbg2\plugins\Bookmark. dil

EAX=00000001 EBX=0012EA2C ECX=00000000 EDX=00000 000
ESP=0012E7CC EBP=0012E7D0 ESI=0012F61C EDI=00564 858
EIP=022B12B7 EFL=00210206

Code dump:
022B1277 C3558B EC 837D 0CO01 7508 8B 45 08 A3 A0 B6
022B1287 2B 02 B8 01 00 00 005D C20C 0090 90 55 8B EC

| apologize also for the inconveniences. If you miss some very useful function, please send me a mail, but
don't expect too much.

That's all for now!

- Oleh Yuschuk, also known as Olly

77

